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The diversity, abundance, and health of
wild bees is jeopardized primarily by
land-use modifications, among other
global change drivers.

Defining and measuring health in wild
bees requires an integrative approach
across disciplines.

We use elements from chemistry, stoi-
chiometry, ecology, physiology, pathol-
ogy, and genetics to (i) contribute to a
more comprehensive definition of wild
bee 'health', and (ii) define a framework
Wild bee populations are declining due to human activities, such as land use
change, which strongly affect the composition and diversity of available plants
and food sources. The chemical composition of food (i.e., nutrition) in turn deter-
mines the health, resilience, and fitness of bees. For pollinators, however, the
term 'health' is recent and is subject to debate, as is the interaction between nu-
trition and wild bee health. We define bee health as a multidimensional concept in
a novel integrative framework linking bee biological traits (physiology, stoichiome-
try, and disease) and environmental factors (floral diversity and nutritional land-
scapes). Linking information on tolerated nutritional niches and health in different
bee species will allow us to better predict their distribution and responses to envi-
ronmental change, and thus support wild pollinator conservation.
linking bee health with floral resource/
nutritional landscapes through assessing
species-specific nutritional niches.

We suggest a novel and holistic ap-
proach for capturing bee health through
combining field and laboratory tools.

Knowledge gained by applying this
framework will serve as a blueprint
for stakeholders engaged in pollinator
conservation.
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Bees decline because their food sources disappear
Animals pollinate >85% of flowering plants and 75% of the leading crops worldwide [1] which
provide food and medicines for other animals and humankind. They also support natural habitats
and play a key role in plant productivity, food webs, and ultimately in human well-being [1–3].
Bees (Apidae) are the most important group of pollinators, and the vast majority are represented
by wild species (~20 000 species) [4].

Alarmingly, many wild bee populations are declining due to the impact of different biotic and
abiotic stressors caused by human activities that act alone or in combination, such as pesticides,
invasive species, pathogens, intensive land-use, and climate change [5–11]. In particular,
agricultural intensification appears to negatively impact on wild bee communities [12,13]. In
fact, overall biodiversity typically decreases with increasing land-use intensity [14,15], which
directly or indirectly leads to loss of floral diversity and nesting sites [10,16], and may alter
pathogen prevalence [17–19]. Declining floral diversity in turn decreases the spectrum of
flowering plants that are available as food sources, and therefore restricts the nutritional
landscape accessible to bees [20–23].

Nutritional landscapes of bees
As nutritional intake and thus the nutrient composition (henceforth referred to as nutritional quality)
of food strongly determine the health, resilience to pathogens, and fitness of animals [24], access
to food resources that enable diverse and balanced nutrition is one key driver of population
stability [21]. In this context, we consider a nutrient to be any chemical compound (i.e., from
chemical elements, phospholipids, and amino acids to 'group components' such as proteins)
that are part of the food/nutrition of bees. Bees obtain most nutrients and several potential
Trends in Ecology & Evolution, April 2022, Vol. 37, No. 4 https://doi.org/10.1016/j.tree.2021.11.013 309
© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://orcid.org/0000-0002-1453-5693
https://orcid.org/0000-0002-3045-2599
https://orcid.org/0000-0002-3827-1135
https://orcid.org/0000-0002-3308-2992
https://orcid.org/0000-0001-7438-4885
https://orcid.org/0000-0001-5716-3634
https://orcid.org/0000-0003-2139-8575
https://orcid.org/0000-0003-3664-6922
https://orcid.org/0000-0002-3461-3249
https://orcid.org/0000-0002-4492-5967
https://orcid.org/0000-0002-9258-2073
https://orcid.org/0000-0003-2808-6793
https://orcid.org/0000-0003-1638-3141
https://orcid.org/0000-0002-2509-0554
https://orcid.org/0000-0001-8334-3313
https://orcid.org/0000-0002-0736-3619
https://orcid.org/0000-0002-8154-9569
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tree.2021.11.013&domain=pdf
https://doi.org/10.1016/j.tree.2021.11.013
http://creativecommons.org/licenses/by-nc-nd/4.0/
CellPress logo
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tree.2021.11.013&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tree.2021.11.013&domain=pdf


6Chair of Nature Conservation and
Landscape Ecology, University of
Freiburg, Freiburg, Germany
7Zoological Museum of Kiel University,
Kiel, Germany
8US Department of Agriculture (USDA)
Agricultural Research Service Bee
Research Laboratory, Beltsville, MD, USA
9Université Paris-Saclay, CNRS, IRD,
UMR Évolution, Génomes,
Comportement, et Écologie,
91198 Gif-sur-Yvette, France
10Royal Botanic Gardens, Kew, Surrey
TW9 3AE, UK
11University of Greenwich, London, UK

*Correspondence:
alejandra.parreno@tum.de
(M.A. Parreño),
michal.filipiak@uj.edu.pl (M. Filipiak), and
sara.leonhardt@tum.de (S.D. Leonhardt).
@Twitter: @maparg, @MichaelFilipiak,
@CiyaTheFox, @naturealexk,
@Clm_Leroy,@NielsPio,@BeePlantChem

Trends in Ecology & Evolution
OPEN ACCESS
medically active plant secondary metabolites from flowering plants by consuming mostly nectar
and pollen [20,25,26]. Nectar primarily provides carbohydrates for maintaining energy and meta-
bolic processes, whereas pollen is the main source of all other macronutrients (i.e., protein and
fat) and micronutrients (e.g., vitamins, sterols) that are required for tissue homeostasis, develop-
ment (e.g., ovary development), and larval growth [27–29]. Ideally, floral communities provide
food resources of both sufficient quality and quantity. The quantity of food resources is
determined by the abundance of flowers present in the landscape – namely the number of
plants/flowers present per species and the overall amount of flowering species [30]. The quality
of food resources depends on the composition of different flowering plant species because
each plant species provides pollen and/or nectar with a specific nutrient profile [31]. In fact, the
nutritional profiles of pollen and nectar vary greatly among different plant species [32–35] and
even between plant individuals of the same species growing in different plant communities [36].
Floral communities, which are characterized by a specific composition and diversity of flowering
plant species, consequently determine resource availability and diversity, and thus determine the
nutritional landscape in which bees are foraging [21]. More details of variation in nutritional quality
in pollen and nectar, the effect of different diets on bee performance and fitness, and differences
in foraging preferences among bees are given in Vaudo et al. [21].

Although much less well understood, the nutritional needs of bee species are also expected to
differ substantially between bee species [21]. The sustainability of bee populations thus depends
on flowering plant communities that provide sufficient amounts of the different nutrients required
because the quality of food, and in particular of pollen, directly determines offspring survival and
development, and can therefore influence the entire population [21,37,38].

Surprisingly, the interaction between flowering plant communities, the available nutritional landscape,
and the health status of different wild bee species has hitherto received little attention (cf [21,34]). This
knowledge is, however, crucial for determining how floral communities and respective conservation
measures can support wild bee populations. We therefore propose a conceptual framework for
how anthropogenic changes in flowering plant communities can affect bee communities by altering
the nutritional landscape and thus niches available to support healthy wild bee populations.

Measuring wild bee health
Although human health is understood as the physical, mental, and social well-being of an individual or
population, the health of wildlife has generally been understood as the absence of disease [39]. For
pollinator communities, the term 'health' only recently appeared in the literature and its precise
definition is still subject to debate [40]. López-Uribe et al. suggested a multilevel approach and the
use of various parameters to measure bee health at the individual, colony, and population level
[40]. The health status of a population should then be a direct consequence of the average health sta-
tus of individuals, where population size is likely to correlate positively with average individual health.

We propose to apply a multidimensional concept of bee health to wild bees – defined as the status
of well-being of each individual as a result of their interaction with the local environment (Figure 1).
We suggest that all or several of the following physiological parameters should be recorded and in-
tegrated to comprehensively capture individual bee health – the composition and amount of stored
nutrients in bee bodies (such as proteins, lipids, glycogen, chemical elements), body size [41],
pathogen load, beneficial microbiota [42], immunocompetence [43], and fertility [44].

Physiological parameters were shown to be important for understanding the sensitivity of species
to environmental modifications [45] because the physiology of individuals responds before
changes in populations become visible [46]. For instance, diet quality correlates with increased
310 Trends in Ecology & Evolution, April 2022, Vol. 37, No. 4
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Figure 1. The multifaceted nature of bee health. The main landscape-scale environmental factors, their effects on the
floral community and thus on the nutritional landscape and bee diets, and the consequences for bee nutrition and health.
These can be observed by recording and integrating different parameters (right column). Bee health based on the
physiology of individual bees can then be related to additional parameters, such as population density (i.e., the number of
bees caught per plot for a given species and time-period) or variation in population dynamics over time, ideally obtained
over multiple seasons to infer changes in population densities across years.
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levels of the storage protein and antioxidant vitellogenin in individual honey bees, and this in turn
correlates with higher overwintering survival of the entire colony [19,47]. Energy storage is crucial
for bee survival. The main categories of macronutrients used for energy storage in insects (glyco-
gen, lipids, and proteins) affect several life-history traits such as dispersal capacity, reproduction,
diapause, and survival [48]. Moreover, both macro- and micronutrients are acquired through the
consumption of pollen and nectar, and thus are at the interface between bees and floral re-
sources. Variations in floral resource availability will therefore influence the energy budget and ul-
timately the health of bees.

Additional physiological health parameters sensu lato include morphometrics, stoichiometry,
microbial communities, and pathogen loads. For example, wing morphometry and fluctuating
asymmetry were found to correlate with different stressors [49–51]. In addition, floral composition
and diversity are known to shape the bee microbiome composition, particularly in solitary bees,
with consequences for nutrient uptake, detoxification, immunity, and health [44,52–54]. By defin-
ing stoichiometric phenotypes (i.e., the elemental composition of bee bodies) [55], deviations
from optimal phenotypes, as expected in nutritionally impoverished landscapes and for declining
populations, can be revealed, which can then also indicate reduced health.

All physiological health parameters mentioned previously are likely affected not only by multiple
environmental parameters related to variation in floral resource diversity, abundance, and quality
but also by environmental pollutants (e.g., pesticides, antibiotics, heavy metals) and pathogens
(Figure 1). Measurement of multiple variables can therefore provide a more complete picture of
pollinator health status than focusing on a single parameter.

Floral diversity as an environmental driver of bee health
Floral diversity, abundance, and community composition correlate with the abundance and
diversity of wild bee species [56,57] through food availability [58], nutritional quality or content
[21,27,59,60], and resource phenology [23,58,61]. Bees thrive in environments where plant
species diversity is high [12,62,63], as is the diversity and quantity of available food resources
[23,64,65]. Moreover, resource diversity increases the opportunities for specialist (oligolectic)
bee species with restricted pollen host plants to find suitable food resources. In generalist
(polylectic) species, access to a diverse spectrum of resources supports immunity, health,
performance, and survival (Table 1), presumably through ready access to adequate nutrition and
beneficial plant secondary metabolites. By contrast, chronic intake of monotonous, nonsuitable,
low quality, or toxic food reduces the immune-competence and vitellogenin levels of bees, thus
affecting bee health through 'nutritional stress' [47,66]. Poor nutrition can also lead to higher
Trends in Ecology & Evolution, April 2022, Vol. 37, No. 4 311
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Table 1. Effect of floral diet on bee health: key studies on the effects of monofloral and polyfloral diets on the health and performance of different
generalist (i.e., polylectic) bee species under both laboratory and field conditions

Experiment Bee species Effects Response variable Refs

Landscapes, enriched or not with
melliferous catch crops; effect on colony
overwintering

Honeybee (Apis mellifera) Access to more diverse floral resources
was linked to a higher bee vitality
(vitellogenin expression level)

Bee physiology
(vitellogenin expression level)

[47]

Monofloral diet combined with pesticides;
effects on colony performance

Buff tailed bumblebee
(Bombus terrestris)

Additive negative effects of monofloral
diet and pesticides on colony growth,
drone size, and reproductive effort

Worker mortality, worker
weight, colony weight gain,
number of males, food uptake

[73]

Monofloral versus polyfloral pollen diets Honeybee (A. mellifera) When parasitized, bees fed with the
polyfloral blend lived longer than bees fed
with monofloral pollens

Longevity of adults [74]

Diets with varying proportions of
Ranunculus and Sinapsis

European orchard bee
(Osmia cornuta)

Monofloral diets of Ranunculus are
detrimental for larval performance

Larval performance [75]

Royal jelly supplemented with mono- or
polyfloral pollen diets

Honeybee (A. mellifera) Larval resistance to disease was
enhanced on a diet supplemented with
either dandelion or polyfloral pollen

Larval resistance to disease [76]

Landscapes differing in floral resource
diversity; effect on colony performance and
reproduction

Sugarbag bee
(Tetragonula carbonaria)

Colony performance and reproduction
correlated positively with floral diversity in
the landscape

Colony performance and
reproduction (brood)

[64]

Wild plant diversity gradient diet (including
oilseed rape treated with a neonicotinoid)

Red mason bee
(Osmia bicornis)

Resource diversity offset the effects of
insecticides (interactive effects) and
increased reproduction parameters

Brood cell production, bee
reproduction, larval to adult
development

[71]

Monofloral and mixed diets combined with
pesticide in nectar; effect on nesting success

Common eastern
bumblebee (Bombus
impatiens)

Exposure to pesticides reduces survival
and activity and brood size; the effect
increased on a monofloral diet

Nesting success, queen
mortality and activity levels,
queen nectar consumption,
colony development (brood)

[77]

Mixture of pollen in diet; effect on lifespan Common eastern
bumblebee (B.
impatiens)

Survival of bees fed a pollen mixture with
50% unfavorable pollen (Helianthus
annuus, Asteraceae) was as good as on
a high-quality monofloral diet

Lifespan of bees in captivity [78]

Mono-, di-, and trifloral diets; effect on
colony development

Buff-tailed bumblebee
(B. terrestris)

Colonies developed best on mixed pollen
diets or high-quality monofloral pollen diets

Colony development (brood) [38]

High pollen diversity and protein versus low
pollen diversity and protein diets combined
with pesticide; effect on the development of
hypopharyngeal glands

Honeybee (A. mellifera) Size and shape of hypopharyngeal acini
was affected by pesticide and diet,
whereas protein content in bee head was
affected only by pesticide

Physiological development [79]

Landscape gradient of floral resource
abundance and diversity

Honeybee (A. mellifera) Decline in pollen availability in summer
led to decrease in pollen harvest, colony
performance, and overwintering failure

Colony performance (brood,
adult population size, honey
reserve) and overwintering

[80]

Landscape gradient of semi-natural habitats Buff-tailed bumblebee
(B. terrestris)

Higher abundance of
semi-natural habitats improved
reproductive performance

Colony growth and
reproductive performance
(number of new queens
produced)

[35]

Food resource limitation and pesticide
exposure

Orchard mason bee or
blue orchard bee
(Osmia lignaria)

Pesticides and food limitation had
additive effects and reduced
reproduction

Survival, nesting, and
reproduction

[72]

Diets differing in floral composition; effect
on resilience to heat stress

Buff-tailed bumblebee
(B. terrestris)

Colonies were less susceptible to heat
stress when fed suitable/high-quality diets

Colony resistance to stress [81]
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susceptibility to disease [67] and pesticides [68]. In fact, nutritional stress as a consequence of
restricted access to adequate floral resources is considered to be one of the main drivers of
bee pollinator decline [21,69,70]. Although floral diversity may not provide added value per se or
automatically yield beneficial synergistic effects compared with higher-quality monofloral diets
[34,71,72], it can clearly mitigate the negative effects of poor diets and provide overall more choices
to various bee species (Table 1).
312 Trends in Ecology & Evolution, April 2022, Vol. 37, No. 4
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However, how floral resource diversity and nutritional quality interact and affect bee health re-
mains largely unclear. This is particularly true for wild bees that are considered to be less resilient
to environmental changes and are more difficult to study than managed honeybees [72,82]. For
example, how different nutrients or nutrient groups contribute to bee health is poorly understood,
as is whether bee species differ in their tolerance to deviations from optimal nutritional profiles
and thus to the available nutritional landscapes. Understanding these links will shed light on the
mechanisms underlying the observed positive effects of, for example, polyfloral diets on bee
performance (Table 1). This knowledge will also enable better strategies for conservation or
restoration of biodiversity for pollinators, and thus contribute to combating ongoing bee declines
(discussed later). We therefore propose to link floral communities, nutritional landscapes, and bee
health and diversity through assessing bee species-specific nutritional niches.

Nutritional niches of bees
The ecological niche of a species describes the range of environmental conditions and resources
that are required for its persistence; it positions each species in relation to others in ecosystem
space [83], taking into account physical conditions, such as climate, and food resources [84].
The nutritional niche is nested within the ecological niche and describes a specific proportion
and ratio of nutrients which enable maximum growth, development, performance, and fitness
(Figure 2A) [85–87]. Notably, precise values of the optimal niche can change with the internal
state of an animal (e.g., larva versus adult) and with changing environmental conditions [87].
The nutritional niche can consequently be described by a multidimensional geometric space
defined by food chemistry where each axis represents a nutrient (e.g., specific amino acids,
chemical elements, or group of components) that are functionally relevant to a species (i.e.,
they are required for their development, survival, and reproduction [37,87,88]) (Figure 2). Within
this space, some combinations of nutrients are more important for performance and fitness
than others. If they are limited in the environment this can result in a discrepancy between the op-
timal nutritional niche of a consumer and the niche provided by the environment as suggested by
ecological stoichiometry (stoichiometric mismatch) [89]. Such important nutrients are often regu-
lated by animals, as revealed by the Geometric Framework of Nutrition (GFN) [85,90]. For in-
stance, honey bees (Apis mellifera), bumble bees (Bombus spp.), and mason bees (Osmia
TrendsTrends inin EcologyEcology & EvolutionEvolution

Figure 2. Nutritional niches of bee species in a multidimensional nutritional space. (A,B) The optimal niche space
(shaded) and the tolerated niche space (lighter color) of a species (Sp), and species-specific nutritional niches. Each shaded
space represents the combinations and concentration ranges of nutrients that are tolerated, and thus support the growth
development, performance, and fitness of a species. Strong deviations from the nutritional niche over extended time-
periods will likely lead to negative impacts on health.
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bicornis) regulate their protein, lipid, and/or carbohydrate intake depending on their age and the
presence of brood [91,92]. For these important nutrients, species likely show little tolerance to de-
viations from the concentrations that best support their performance/fitness, whereas they are
likely more tolerant to deviations from concentrations that are less crucial for performance/fitness
(as shown for Bombus terrestris [93]).

Such differences in tolerance to deviations are captured by the tolerated nutritional niche – which
deviates from the optimal niche – and thus captures the range that is still physiologically manage-
able by organisms and results in positive growth, development, and fitness [87]. If the actual
nutritional niche offered by the available nutritional landscape deviates too far from the tolerated
nutritional niche, individuals will fail to achieve successful growth, development, or reproduction
[87]. In turn, the degree of variation in the tolerated niche space denotes the tolerance of a specific
animal to a suboptimal diet. Different species likely vary not only in the position of their optimal
niche (i.e., the specific proportions and ratios required) but also in their tolerance to deviations
from the optimum, resulting in species-specific nutritional niche shapes and sizes (Figure 2B).
Determining the tolerated nutritional niche of a species can thus provide valuable information to
predict the spatial and temporal distribution of that species and its responses to environmental
change [87,94].

As a consequence of the complex and diverse chemistry encountered in different plant species,
animals must perform nutrient-selective foraging so as to ensure healthy offspring development
[95]. In the case of bees, this means that they should choose pollen with a nutritional composition
that matches their nutritional needs, as shown for several bumble bee species that thrive on
pollen with high protein to lipid (P:L) ratios and low lipid content [21,96], or O. bicornis bee larvae
that prefer diets with a high carbohydrate content [91]. The chemical profile of pollen jointly
collected by individual (female) bees of a population can therefore represent a proxy for their
species-specific nutritional niche.

Recent advances in analytical methods facilitate accurate quantitative chemical analysis of pollen,
including fatty acids and protein-bound and free amino acids [97], sterols [98–100], plant second-
ary metabolites [101], and chemical elements [89]. The chemical/nutritional profile of the overall
pollen diet of a bee individual can thus be calculated by integrating information on the proportional
contributions of the nutritional profiles of pollen of all plant species visited for pollen collection
(e.g., obtained through metabarcoding or palynological studies). Notably, this approach does
not allow the optimal nutritional niches of species to be determined, which would require cage
(semi-field) experiments with manipulated artificial diets. However, through linking measured
(actual) nutritional niches and animal health, the nutritional niches measured at sites where
populations show generally good health status and high population density can be a good
proxy for the tolerated nutritional niches of a species.

Dietary versus nutritional generalists and specialists in bees
The degree of dietary specialization of a species is determined by its physiological (e.g., ability to
break down/tolerate specific plant compounds), sensory (e.g., intrinsic bias towards specific
flowers/plants), and morphological (e.g., proboscis length and wing morphology) characteristics.
It is typically described by the range of plant taxa used for pollen collection (i.e., pollen hosts)
[102,103]. In bees, the full spectrum of flower specialization – sometimes referred to as dietary
breadth [53,104] – ranges from species that collect floral pollen from a single plant species or
genus only (monolecty, oligolecty) to generalists that do not appear to have distinct flower prefer-
ences (polylecty) [20]. However, even generalists, including many social bees, forage pollen from
a limited range of flowering species [105–107]. A classification of floral specificity of pollen
314 Trends in Ecology & Evolution, April 2022, Vol. 37, No. 4
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collection in bees covering all levels of specialization was suggested by Cane and Sipes [108] and
Müller and Kuhlmann [105]. This classification, however, does not consider pollen nutrients, thus
is not based on the nutritional niches of a species [105,108].

We propose that bee species differ not only in the specific nutrient amounts and ratios that are
required for optimal survival and reproduction (see earlier) but also in the degree of variation in
nutrient space that is tolerated, that is, the tolerated nutritional niche, and thus differ in the
nutritional landscapes in which they can thrive. Nutritional specialists are thus species with
comparatively narrow nutritional niches, whereas generalists are species with a comparatively
wide nutritional niche (Figure 3). Nutritional niche breadth and dietary breadth can correlate
with each other, but do not necessarily need to be correlated. Although it is likely that dietary
specialists also show a narrow nutritional niche, some dietary specialists may have a broader
nutritional niche than some generalists. For example, some bees may visit a broad spectrum of
plant species with chemically similar pollen profiles, for example, bee species that collect pollen
TrendsTrends inin EcologyEcology & EvolutionEvolution

Figure 3. Link between floral diversity, nutritional landscapes, and nutritional niches.
For a Figure360 author presentation of Figure 3, see the figure legend at https://doi.org/10.1016/j.tree.2021.11.013
Bee species (Sp) with narrow nutritional niches (nutritional specialists, marked with green dots), and thus with little tolerance
to changes in the nutritional space (purple area in the nutritional space), are likely to be more susceptible to changes in flora
diversity than are bee species with broad nutritional niches (nutritional generalists, marked with red dots) and higher tolerance
(brown area in the nutritional space). The nutritional landscape of each environment is reflected by different colors of nutrients
(bars in the center). This landscape is more diverse and balanced, and thus provides more nutritional niches, in florally diverse
environments (left) compared with environments with reduced floral diversity (right). Florally diverse environments also enable
bees to dilute toxic compounds (e.g., harmful plant secondary metabolites or pesticides), thereby exposing them to overa
lower levels of harmful compounds compared with environments with reduced floral diversity.
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Outstanding questions
How can wild bee health be defined
and measured? We propose specific
guidelines and parameters to measure
health in wild bees and to link it
to floral resource/food landscapes
by assessing nutritional niches.
Applying our conceptual framework
will enable better tailored management
recommendations for the conservation
of wild bees.

How do nutrition, health, and disease
interact? Three-way interactions, such
as between nutrition, health, and dis-
ease loads, are difficult to study for
wild bees, in particular in the field. We
propose to measure and integrate dif-
ferent elements, namely pathogen
loads, physiological parameters, and
nutritional niches, based on pollen
metabarcoding and analytical chemis-
try, across environmental gradients
that differ in plant diversity so as to dis-
entangle such interactions.

Can knowledge about bee nutritional
niches aid in conservation measures
and thus support the maintenance
of ecosystem services? We suggest
that floral/nutritional diversity conveys
health benefits to generalist and
specialist bee species by providing
nutritional landscapes that offer a
variety of nutritional niches. Analyzing
the nutritional requirements of different
species, and of the plant species and
communities that support them, will
aid in better tailoring conservation
measures to specific bee communities.
from Asteraceae. These are mostly specialized bees that forage on multiple different Asteraceae
species, whereas generalist bee species avoid Asteraceae pollen despite the ubiquitous distribu-
tion of this plant family and the substantial amount of pollen provision (known as the Asteraceae
paradox [105]). Although the reasons for this paradox remain unresolved, the abundance of
specific chemical compounds (e.g., Δ7-sterols) in the pollen of Asteraceae species may offer
an explanation [100].

Linking bee health, floral diversity, and nutritional niches
Some generalist bees have been shown to mix pollen from different plant sources, either during
one or several foraging trips, likely to achieve a nutritional balance and/or to dilute toxic
compounds [72,75], indicating that nutritional generalists may even specifically target and clearly
benefit from diverse pollen sources in florally diverse environments (Table 1). Nutritional specialists,
conversely, depend on the presence of specific plant species which provide pollen with nutrient
profiles that are close to their nutritional niches. Access to a nutritionally diverse landscape as
typically provided in florally diverse environments would ensure that different species-specific
macro- and micronutrient requirements can be met [24,109]. We therefore predict that nutritional
specialists with a comparatively small nutritional niche are more common in florally diverse (and
thus nutritionally diverse) habitats – where they have access to a broader spectrum of resources
and thus of potential nutritional niches, including their own [110] (Figure 3).

Both nutritional generalists and nutritional specialists should therefore thrive in nutritionally diverse
landscapes, which are expected to provide more nutritional niches than nutritionally poor
landscapes (Figure 3). Bees in nutritionally diverse landscapes will more likely encounter their
(potentially even optimal) nutritional niche. As a consequence, they should be better nourished
and therefore be healthier than bees in nutritionally poor landscapes.

Notably, bees in more biodiverse environments may also harbor more diverse pathogens and
parasites [44,67,111,112]. However, access to (nutritionally) diverse resources may render
them more tolerant and resilient to pathogens and parasite virulence factors (through optimal
physiology), and/or more resistant to associated infection risks (through optimal immunity)
[10,74,81,113]. They may also more easily adjust their diet to combat infection, for example, by
increasing the proportion of protein in their diet [114,115] or by collecting resources with antimi-
crobial plant secondary metabolites [25,33,116]. In fact, the resilience of bees, not only to
diseases but also to other stressors (e.g., climatic or weather extremes), varies with floral/
nutritional quality [81,117]. We therefore do not expect that more stressors are necessarily linked
with decreased health, but instead predict a three-way interaction between nutrition, health, and
stressors such as pathogen loads, which may result in different scenarios such as linear and
nonlinear shifts in nutritional niches (Figure 4). For example, protein-rich diets improve the
immune-competence of bumble bees (B. terrestris) exposed to a parasite [66], and lipid-rich
diets increase survival in honey bees (A. mellifera) exposed to an organophosphate insecticide
[117]. These studies indicate that bees can adjust their diets to compensate for different
stressors, and this can result in altered nutritional niche spaces (Figure 4). Consequently, floral/
nutritional diversity may convey health benefits to generalist and specialist bee species by providing
a variety of nutritional nicheswhich can increase the nutritional flexibility and resilience of beeswhen
facing additional stressors.

Concluding remarks
By integrating different physiological health measures and nutritional niches with floral diversity
and composition, we can reveal meaningful interactions between nutritional landscapes and
bee health (Figures 3 and 4). We can also investigate hitherto unknown interactive effects
316 Trends in Ecology & Evolution, April 2022, Vol. 37, No. 4

CellPress logo


TrendsTrends inin EcologyEcology & EvolutionEvolution

Figure 4. Interactions between nutrition, health, and stressors are altered in florally impoverished landscapes.
Hypothetical scenarios depict linear and nonlinear changes in the nutritional niches of nutritional specialists (purple areas) and
generalists (brown areas) following loss of floral diversity plus additional stressors (e.g., increased pathogen prevalence).
Stressors may shift the tolerated nutritional niche space of a bee species without affecting its optimal nutritional niche
(scenario 1). Alternatively, it may result in a nonlinear change in overall nutritional niches (including both the optimal and
tolerated niche space). Moreover, the magnitude and direction of ecological niche shifts under stressed scenarios is
known to differ among taxonomic groups [118], demonstrating highly species-specific responses. Likewise, the nutritional
niche of one species may be strongly decreased, whereas the optimal and tolerated nutritional niche of another species
may remain unaffected in the presence of additional stressors (scenario 2). This in turn may result in a species-specific
likelihood of becoming (locally) extinct under stressed conditions. To our knowledge no study to date has assessed
nutritional niche shifts in different bee species exposed to different stressors.
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between different physiological health parameters such as stoichiometry, physiology, and
disease loads.

This integrative approach will enable better tailored management recommendations for bee
conservation (see Outstanding questions). Until now most conservation measures have implicitly
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assumed that wild bee populations can be enhanced by increasing floral diversity [8]. However,
this can lead to shortages in the types, amounts, and proportions of specific nutrients, and thus
in a lack of the nutritional niches required by different bees, in particular by nutritional specialists.
Such shortages can be elucidated, for example, by comparing bee and pollen stoichiometry to re-
veal stoichiometric mismatches [89]. Similarly, bee–nutrient networks and ordination analyses
could reveal differences in link strength between specific nutrients or nutrient ratios and specific
bee species, where strong links indicate important nutrients, nutrient groups, or nutrient ratios
and the plant species providing them. This information can then be used to improve flower seed
mixes or support the conservation of key plant species and their habitats.

Notably, the quantity and quality of available floral resources can be modulated by environmental
conditions, such as water availability [119], rendering nutritional landscapes and bee foraging
highly sensitive to global change [120]. For example, global change will likely affect the functional
complementarity of bee–plant interactions, for example, through advancing seasonal flowering
events. It remains open which bee species are sufficiently plastic in their phenology and/or
resource requirements to maintain their floral associations and pollination service [121,122]. It is
also poorly understood how such shifts in phenology or resource use induced by global change
interact with bee health. Can we use knowledge about links between species-specific nutritional
niches (breadth) and health to predict which bees will be able to forage in specific landscapes?
Can we adjust floral enhancement schemes to take into consideration factors other than bee
nutrition, such as edaphic conditions, climate sensitivity, interactions with other plants within
communities, and stakeholder interests? Understanding how global change affects the physiology
and adaptability of both bees and plants – and thus (nutritional) niche shifts and health require-
ments across species – is one of the biggest challenges of ongoing and future research.
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