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Abstract: Honey bees and the pollination services they provide are fundamental for agriculture and
biodiversity. Agrochemical products and other classes of contaminants, such as trace elements and
polycyclic aromatic hydrocarbons, contribute to the general decline of bees’ populations. For this rea-
son, effects, and particularly sublethal effects of contaminants need to be investigated. We conducted
a review of the existing literature regarding the type of effects evaluated in Apis mellifera, collecting
information about regions, methodological approaches, the type of contaminants, and honey bees’
life stages. Europe and North America are the regions in which A. mellifera biological responses were
mostly studied and the most investigated compounds are insecticides. A. mellifera was studied more
in the laboratory than in field conditions. Through the observation of the different responses exam-
ined, we found that there were several knowledge gaps that should be addressed, particularly within
enzymatic and molecular responses, such as those regarding the immune system and genotoxicity.
The importance of developing an integrated approach that combines responses at different levels,
from molecular to organism and population, needs to be highlighted in order to evaluate the impact
of anthropogenic contamination on this pollinator species.

Keywords: honey bees; sublethal effects; plant protection products; bees decline; monitoring strategies;
methodological approach

1. Introduction

Honey bees (Apis mellifera) are essential organisms for the environment, in particular
for their critical roles in the pollination of crops, flowers, and fruit trees [1–3]. It has been
estimated that honey bees are responsible for providing a pollination service to 96% of
animal-pollinated crops [4,5]. Bees are also indirectly responsible for the reproduction and
maintenance of wild plant communities and biodiversity [6–8]. Their value to global food
crops is estimated at €153 billion per year [9]. In addition, honey bees provide honey, pollen,
wax, propolis, and royal jelly to humans [10]. Throughout the last decade, declines in bees
and other pollinators have been observed globally [11–13]; important honey bee colony
losses have been reported, particularly in North America and Western Europe [14–16].
It was beekeepers who alerted the scientific community of this vital colony mortality,
since they monitor bee colonies worldwide and are immediately aware of any kind of
changes to the bees’ colony [17]. This decline has led to concerns over there being a sustain-
able food supply and the health of natural ecosystems [18]. The causes of pollinator decline
may be complex and subject to disagreement. However, the general weakening and death
of bee colonies has been observed to be mainly caused by the combined effects of multiple
stressors [3,19–21], such as biological factors [22,23], environmental factors [19,24,25], chem-
ical and nutritional stressors [26,27], chemical and biological factors [28–33] and multiple
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chemicals [34–36]. In particular, this last kind of stressor is a matter of great concern since
bees can be exposed to a wide range of chemical mixtures, including anthropogenic com-
pounds, such as plant protection products (PPPs) or veterinary drugs, and those of natural
origin, such as mycotoxins, flavonoids and plant toxins [20,37,38]. Although PPPs, such as
insecticides, acaricides, herbicides, and fungicides, have many benefits for agriculture [39],
there are also several potential risks associated with their use, such as pest resistance,
resurgence, and secondary pest outbreaks, as well as wider environmental contamination
and human health concerns [40–42]. Although insecticides are applied to target insect
pests, their use in agriculture can affect non-target insects that provide beneficial services to
agriculture. Among these beneficial insects, the focus was on social bees, with a particular
interest in neonicotinoid insecticides and their lethal and sublethal effects at colony and
population levels. Nonetheless, other PPPs used in modern agriculture, such as fungicides
and herbicides, were demonstrated to affect honey bee’s health status [43–46].

The sublethal effects of PPPs and other anthropogenic contaminants in Apis mellifera
need to be investigated. A wide range of studies investigated mortality and accumula-
tion in honey bees, in order to obtain data related to contamination that may affect these
organisms [33,47–49]. Moreover, studies concerning the general fitness of honey bees,
which examined their behaviour, flight activity, and sensory ability, were conducted over
the years to observe the macroscopic effects of contaminants [48,50–52]. To a lesser extent,
enzymatic and molecular responses have also been studied, using genomic, metabolomic,
and transcriptomic techniques and biomarkers [43,53–56], in order to increase understand-
ing of the anthropogenic impact on these insects.

The current manuscript aims to provide a review of the available toxicological studies
about the biological responses of honey bees to external stressors. In particular, we focused
on where studies were carried out, we examined the contaminants involved, methodologi-
cal approaches, honey bees’ life stages, and the different kind of responses considered in
each paper, with the purpose to determine and identify knowledge gaps. This review could
also provide indications regarding possible improvements in the monitoring approach,
both in a scientific and regulatory way.

2. Materials and Methods

The search for scientific papers was conducted on ScienceDirect, Google Scholar,
and One search database, using the following search terms to find relevant literature:
“Apis mellifera”, “honey bees”, “biomarkers”, “ecotoxicology”, “toxicology”, “sublethal
effects”, and “biochemical analysis”. To extend the collection of the relevant literature,
the bibliographical references of each article were also examined. The selected articles were
written in English and the full text version is available. Grey literature and non-accessible
peer-reviewed articles were not included in our work, and this resulted in a primary dataset
of 846 publications.

Papers considered for this review included investigations into toxicity effects, sub-
lethal behavioural effects, impacts on bees at a genetic, molecular, or physiological level.
Studies that reported only LC50 and LD50 were omitted from our analysis. The final
dataset included a total of 106 research papers. For each paper, we extracted the following
information: a complete bibliographical reference, a methodological approach, the inves-
tigated compounds, the life stage, and the studied responses. Where multiple categories
of any variable were reported in the same paper, all were included in the final analyses.
Methodological approaches were divided into three categories: “laboratory”, “semi-field”
and “field”. “Laboratory” studies were defined as those carried out within the laboratory,
with the exposure of honey bees to contaminants. “Semi-field” studies were defined as
those that were conducted outdoors, but confined to bees, e.g., using exclusion cages.
“Field” studies were defined as studies conducted outdoors with no restriction on the bees’
movements and the data were collected in the field.
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The compounds studied in the papers were divided into insecticides, herbicides,
fungicides, acaricides, trace elements, polycyclic aromatic hydrocarbons (PAHs), parasites,
radioactivity, mixtures, and other compounds.

The following life stages were considered: “Brood”, “Pupae”, “Larvae”, “Adults” and
“Queens”. If the life stages at which bees were exposed to pesticides differed from the life
stage at which the effects were measured, then both were included in the final analyses.

Examining the existing literature, we described fifteen different “effect types” that
were assessed, including morphology, apoptosis and necrosis, histopathology, cytotoxicity,
consumption, foraging activity, and fitness, learning ability, other behaviours, physiological
function and morphology, reproduction, sensory (gustatory or olfactory), flight activity,
growth and development and, accumulation. Research studies were placed into multiple
categories if they contained more than one effect type.

Moreover, we isolated more specific responses, mostly characterized by biomarkers
and transcriptomic, metabolomic, proteomic approaches, in nine endpoints: detoxification,
neurotoxicity, immunity, metabolism, oxidative stress, genotoxicity, primary stress response,
carbohydrates assay, and protein amounts. Where studies included more than one option
in any of the variables measured, it was included in analyses of both.

3. Results
3.1. Where Studies Took Place

Most studies examined for this review were carried out in Europe (48) and North
America (35), followed by Asia (11) and South America (9), Africa (8) and Australia (3)
(Figure 1).
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criteria for inclusion in this review.

3.2. Methodological Approaches

As shown in Figure 2, most studies were carried out under laboratory conditions (63),
with 14 studies carried out in semi-field conditions, and 25 at the full field scale.

3.3. Life Stages

The bibliographical research highlighted that most of the studies, as shown in Figure 3,
were conducted on adult bees (99), followed by larvae (9), brood (7), and pupae stage (4).
Only 2 studies, that met the criteria of this work, were about queen bees.

3.4. Studied Compounds

Insecticides were investigated in 71 studies, followed by trace elements, in 15 papers.
Studies on acaricides (12), herbicides (12), and fungicides (11) were present with a similar
number. Mixtures and PAHs are still poorly studied, respectively with 8 and 2 papers
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(Figure 4). In the “other compounds” category, SO2, ethyl methane-sulfonate (EMS),
ethanol and pharmaceutical compounds were included. In the category “parasites” are
present not only papers that examined reactions to parasites but also other contaminants;
there are not any papers that studied only parasites since they did not satisfy the criteria
used for this review.
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3.5. Effect Type

Most studies used for this review investigated more than one effect (64 studies) on
honey bees but 42 studies concentrated on investigating just one effect. The most widely
studied single effect type was accumulation (20) followed by foraging activity (15) studies
(Figure 5). Figure 6 shows studies regarding enzymatic and molecular responses (58):
the effects that were studied in more depth were detoxification (27) and neurotoxicity (26),
followed by metabolic responses (21), immunity (17), and oxidative stress (15).
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that met the criteria for inclusion in this review.

In the following tables, all the examined papers are summarized by endpoint; there
are two tables for each methodological approach, one for cellular to whole organism and
population endpoints, and one for molecular and enzymatic endpoints.

Endpoints examined in laboratory studies are summarized in Tables 1 and 2. Table 1
shows two endpoints were most used in laboratory studies, “foraging activity/fitness/
production of matrixes” and “sensory (gustatory or olfactory)”, both with a total of
12 papers.

Table 2 shows the molecular and enzymatic endpoints examined in laboratory studies.
The most studied effect concerned “neurotoxicity” (24 studies) and the test that was applied
most frequently was the acetylcholinesterase (AChE) activity; only two papers examined
the presence of trembling, hyperactivity, and paralysis in the organisms exposed mostly
to insecticides. The second most investigated endpoint was “detoxification”, with studies
mostly concerning the activity of glutathione-S-transferase (GST) or CYP450. Another
endpoint with a considerable number of papers (17) was “metabolism”, in which alkaline
phosphatase (ALP) and ATPase were mostly examined. “Oxidative stress” endpoint was
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examined only in 14 papers, evaluating the activity of antioxidant enzymes such as catalase
(CAT) and superoxide dismutase (SOD).

In semi-field studies, the most frequently studied endpoints are “foraging activ-
ity/fitness/production of matrixes” and “other behaviors”, both with 6 studies (Table 3).
In Table 4 the molecular endpoints are summarized; in this case the most examined end-
points (3 studies) were “protein amount” and “immunity”, followed by “detoxification”,
with 2 papers.

The endpoints examined in field studies are summarized in Tables 5 and 6. Table 5
shows that 16 studies observed “accumulation” in the honey bees sampled in sites with
different levels of anthropogenic pressure. In general, herbicides and insecticides were the
contaminants that tended to be observed more in these accumulation studies.

Table 1. Summary of laboratory studies divided by endpoint and contaminants.

Endpoint Test N Contaminants Reference

Morphology Cellular structure of midgut cells
2

CdO and PbO nanoparticles, mixtures Dabour et al., 2019 [57]
Morphologies of antenna and

hypopharyngeal glands
Herbicides, fungicides, insecticides,

acaricides Tomè et al., 2020 [58]

Apoptosis/necrosis Apoptosis/necrosis
2

Trace elements, mixtures Dabour et al., 2019 [57]
Apoptosis Insecticides Qi et al., 2020 [59]

Histopathology Midgut, hypopharyngeal and brain
2

Insecticides de Castro et al., 2020 [60]
Midgut Insecticides Oliveira et al., 2019 [61]

Cytotoxicity Midgut, hypopharyngeal and brain 1 Insecticides de Castro et al., 2020 [60]

Consumption

Food consumption

7

CdO and PbO nanoparticles, mixtures Al Naggar et al., 2020 [62]

Food consumption Insecticides, fungicides,
Acaricides Decourtye et al., 2005 [63]

Food consumption Herbicides Helmer et al., 2015 [64]

Food consumption Sodium selenate, seleno-DL-methionine,
DL-methionine Hladun et al., 2012 [65]

Food consumption Insecticides Tong et al., 2019 [27]

Food consumption Insecticides, mixtures Williamson and Wright
2013 [28]

Food consumption Insecticides Zhu et al., 2020 [66]

Foraging activity/
fitness/ production

of matrixes

Foraging activity

12

Insecticides Decourtye et al., 2004 [67]

Sucrose response threshold Sodium selenate, seleno-DL-methionine,
DL-methionine Hladun et al., 2012 [65]

Foraging activity Sodium selenate, sodium selenite,
seleno-L-cystine Hladun et al., 2013 [51]

Fitness and production of wax and honey Metals, selenium Hladun et al., 2016 [68]
Foraging activity Herbicides Herbert et al., 2014 [69]
Foraging activity Radiation (cell phone) Mixson et al., 2009 [52]

Foraging behaviour Insecticides Morfin et al., 2019 [70]
Foraging activity Mixtures Prado et al., 2019 [50]
Foraging activity Insecticides, Bacillus thurigiensis, mixtures Renzi et al., 2016 [33]
Foraging activity Fungicides, insecticides, mixtures Schmuck et al., 2003 [71]
Foraging activity Trace elements Søvik et al., 2015 [72]

Weight, duration of immature development Herbicides, fungicides, insecticides,
acaricides Tomè et al., 2020 [58]

Learning ability

Olfactory learning Insecticides, fungicides,
acaricides Decourtye et al., 2005 [63]

Visual and olfactory learning
4

Insecticides Guez et al., 2010 [73]
Training for olfactory conditioning using

proboscis extension reflex Insecticides, mixtures Williamson and Wright
2013 [28]

Learning and memory-related genes Insecticides Zhang et al., 2020 [74]

Other behaviours

Colony strength

5

Trace elements, selenium Hladun et al., 2016 [68]
Aggressive behaviour Radiation (cell phone) Mixson et al., 2009 [52]
Hygienic behaviour Insecticides Morfin et al., 2019 [70]
Thermoregulation Insecticides Tong et al., 2019 [27]

Behavioural anomalies (exaggerated
motility, discoordinated movements) Fungicides, insecticides, mixtures Schmuck et al., 2003 [71]

Reproduction
Viability of sperm Insecticides, acaricides Chaimanee et al., 2016 [75]

Fecundity
3

Insecticides Dai et al., 2010 [76]
Prepupal weight, percentage of prepupation,

and pupation, relative growth indices
Sodium selenate, sodium selenite,

seleno-L-cystine Hladun et al., 2013 [51]
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Table 1. Cont.

Endpoint Test N Contaminants Reference

Sensory (gustatory
or olfactory)

Olfactory conditioning of Proboscis
extension reflex (PER)

12

Insecticides Al Naggar et al., 2015 [77]

PER Insecticides, acaricides Decourtye et al., 2004 [67]

PER Insecticides, fungicides,
acaricides Decourtye et al., 2005 [63]

PER Insecticides Guez et al., 2010 [73]
Antennal response assays, Proboscis

response assays
Sodium selenate, seleno-DL-methionine,

DL-methionine Hladun et al., 2012 [65]

PER Herbicides Herbert et al., 2014 [69]
PER Insecticides Imran et al., 2019 [78]
PER Radiation (cell phone) Mixson et al., 2009 [52]
PER Insecticides, acaricides Weick and Thorn 2002 [79]

PER Insecticides, mixtures Williamson and Wright
2013 [28]

PER Insecticides Wright et al., 2015 [80]
PER Insecticides Yang et al., 2012 [81]

Flight activity
Flight navigation

3
Radiation (cell phone) Mixson et al., 2009 [52]

Flight ability and success Insecticides Tong et al., 2019 [27]
Flight activity Mixtures Prado et al., 2019 [50]

Growth and devel-
opment/brood

production

Growth of adult workers

5

Insecticides, Varroa destructor Abbo et al., 2017 [47]
Growth and development Insecticides Dai et al., 2010 [76]

Larval growth and development Insecticides du Rand et al., 2017 [82]
Brood production Trace elements, selenium Hladun et al., 2016 [68]

Duration of immature development Herbicides, fungicides, insecticides,
acaricides Tomè et al., 2020 [58]

Accumulation
Chemical analysis

2
Sodium selenate, sodium selenite,

seleno-L-cystine Hladun et al., 2013 [51]

Chemical analysis Trace elements, selenium Hladun et al., 2016 [68]

Table 2. Summary of laboratory studies divided by molecular and enzymatic endpoint and contaminants.

Endpoint Test n Contaminants Reference

Detoxification

CYP genes expression,
glutathione-S-transferase (GST) genes

expression

23

Insecticides Al Naggar et al., 2015 [77]

CYP and GST genes expression CdO and PbO nanoparticles, mixtures Al Naggar et al., 2020 [62]

(GST) Insecticides, fungicides, herbicides and
mixture Almasri et al., 2020 [83]

GST Insecticides Badawy et al., 2015 [84]
GST and CaEs Insecticides Badiou-Bénéteau et al., 2012 [53]
GST and CaE Fungicides, metals, EMS Caliani et al., 2021 [43]

GST Insecticides Carvalho et al., 2013 [55]
Detoxification genes expression Insecticides, acaricides Chaimanee et al., 2016 [75]

Genes encoding CYP450
monooxygenases Insecticides Christen et al., 2019 [85]

Genes encoding CYP450
monooxygenases Insecticides Christen et al., 2019 [86]

Proteomic and metabolomic analysis Insecticides du Rand et al., 2017 [82]

Detoxification genes expression Herbicides, fungicides, insecticides,
Varroa destructor Gregorc et al., 2012 [87]

cytochrome P450 (CYP450), GST and
CaEs Insecticides, acaricides Johnson et al., 2006 [88]

CYP450 Insecticides, acaricides Johnson et al., 2009 [89]
GST and CaE Insecticides Li et al., 2017 [90]

P450 genes expression Acaricides Mao et al., 2011 [91]
GST isoenzymes expression Papadopoulos et al., 2004 [92]

GST, GR and gene expressions Insecticides Qi et al., 2020 [59]
GST Insecticides, Bacillus thurigiensis, mixtures Renzi et al., 2016 [33]

P450 genes expression Herbicides, fungicides, insecticides,
acaricides Tomè et al., 2020 [58]

Esterase (EST), GST, CYP450. CYPs and
GSTs transcript levels Insecticide Yao et al., 2018 [93]

CYP450 and phospholipase A2 Insecticides Zaworra and Nauen 2019 [94]
Detoxification genes expression Insecticides Zhu et al., 2020 [66]
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Table 2. Cont.

Endpoint Test n Contaminants Reference

Neurotoxicity

acetylcholinesterase (AChE)

24

Insecticides Al Naggar et al., 2015 [77]
AChE Al Naggar et al., 2020

AChE and CaE-3 Insecticides, fungicides, herbicides and
mixture Almasri et al., 2020 [83]

AChE Insecticides Badawy et al., 2015 [84]
AChE Acaricides, mixtures Badiou et al., 2008 [95]

AChE and CaEs Insecticides Badiou-Bénéteau et al., 2012 [53]
AChE Insecticides Bendahou et al., 1999 [96]
AChE Herbicides, insecticides Boily et al., 2013 [97]

AChE and CaE Fungicides, trace elements, EMS Caliani et al., 2021 [43]
AChE and CaEs Insecticides Carvalho et al., 2013 [55]

Genes encoding acetylcholine receptors Insecticides Christen et al., 2019 [85]
Genes encoding acetylcholine receptors Insecticides Christen et al., 2019 [86]

Trembling and paralysis Insecticides, acaricides Decourtye et al., 2004 [67]
AChE and CaEs Gamma irradiation Gagnaire et al., 2019 [98]

AChE Insecticides Glavan et al., 2018 [99]
Esterase Insecticides Hashimoto et al., 2003 [100]

AChE and CaE Insecticides Li et al., 2017 [90]
AChE Insecticides Qi et al., 2020 [59]
AChE Insecticides Rabea et al., 2010 [49]

Octopamine, serotonin, dopamine Trace elements Søvik et al., 2015 [72]
Hyperresponsiveness, hyperactivity and

trembling Insecticides Suchail et al., 2001 [101]

Protein level of synapsin Insecticides Tavares et al., 2019 [102]
AChE Insecticides, acaricides Weick and Thorn 2002 [79]
AChE Insecticide Yao et al., 2018 [93]

Immunity

Vtg expression

13

Insecticides, Varroa destructor Abbo et al., 2017 [47]
Defensin 1, Abaecin, Hymenoptaecin

expressions Insecticides Al Naggar et al., 2015 [77]

Nodulation Dexamethasone (eicosanoid biosynthesis
inhibitor) Bedick et al., 2001 [103]

Hemocytes density, encapsulation
response and

antimicrobic activity
Insecticides Brandt et al., 2016 [104]

Lysozyme (LYS) and granulocytes count Fungicides, metals, EMS Caliani et al., 2021 [43]
Immune response genes expression Insecticides, acaricides Chaimanee et al., 2016 [75]

Vtg gene expression Insecticides Christen et al., 2019 [105]
Vtg gene expression Insecticides Christen et al., 2019 [86]
Phenoloxydase (PO) Gamma irradiation Gagnaire et al., 2019 [98]

Immune genes expression Herbicides, fungicides, insecticides,
Varroa destructor Gregorc et al., 2012 [87]

Immune gene expression Insecticides Li et al., 2017 [90]
Vtg synthesis Insecticides Pinto et al., 2000 [106]

Immune genes expression Insecticides Zhu et al., 2020 [66]

Metabolism

Alkaline phosphatase (ALP) and GST Insecticides, fungicides, herbicides and
mixture Almasri et al., 2020 [83]

Alkaline phosphatase (ALP) and GST

17

Insecticides Badiou-Bénéteau et al., 2012 [53]
Na+, K+ -ATPase assay Insecticides Bendahou et al., 1999 [96]

ALP Insecticides Bounias, 1985 [107]
ALP and GST Fungicides, metals, EMS Caliani et al., 2021 [43]
ALP and GST Insecticides Carvalho et al., 2013 [55]

Genes encoding for enzymes involved in
phosphorylation Insecticides Christen et al., 2019 [85]

Proteomic and metabolomic analysis Insecticides du Rand et al., 2017 [82]
GST, CaEs and ALP Gamma irradiation Gagnaire et al., 2019 [98]

GST and CaE Insecticides Li et al., 2017 [90]
Aspartate aminotransferase (AST),

alanine aminotransferase (ALT), ALP Insecticides Paleolog et al., 2020 [108]

ATP assays and GADPH activity Mixtures Prado et al., 2019 [50]
ATPase Insecticides Rabea et al., 2010 [49]

GST, ALP Insecticides, Bacillus thurigiensis, mixtures Renzi et al., 2016 [33]
Metabolic profile Insecticides Shi et al., 2018 [109]
AST, ALT, ALP Acaricides Strachecka et al., 2016 [110]

Abundance of gut microbiota for
metabolic homeostasis, metabolic genes

expression
Insecticides Zhu et al., 2020 [66]
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Table 2. Cont.

Endpoint Test n Contaminants Reference

Oxidative
stress

GST, G6PDH Insecticides, fungicides, herbicides and
mixture Almasri et al., 2020 [83]

GST, superoxide dismutase (SOD) and
catalase (CAT) genes expression CdO and PbO nanoparticles, mixtures Al Naggar et al., 2020 [62]

polyphenol oxidase (PPO)

14

Insecticides Badawy et al., 2015 [84]
CAT Insecticides Badiou-Bénéteau et al., 2012 [53]
CAT Insecticides Carvalho et al., 2013 [55]

CAT, SOD, glutathione peroxidase (GPx),
GST Gamma irradiation Gagnaire et al., 2019 [98]

α-tocopherol and metallothionein-like
proteins (MTLPs) Trace elements Gauthier et al., 2016 [111]

LPO, lutein, zeaxanthin,
α-Cryptoxanthin, β-Cryptoxanthin,
β-Carotene, at-ROH, α-Tocopherol

Herbicides Helmer et al., 2015 [64]

GST and PPO Insecticides Li et al., 2017 [90]
SOD, CAT, reduced glutathione (GSH),

protein thiol groups (SH),
malondialdehyde (MDA)

Trace elements Nikolić et al., 2016 [112]

DNA methylation Insecticides Paleolog et al., 2020 [108]
Peroxidase (POD), malondialdehyde

(MDA), lipid peroxide (LPO), SOD, CAT Insecticides Qi et al., 2020 [59]

GAPD, G6PD Insecticides, Bacillus thurigiensis, mixtures Renzi et al., 2016 [33]
SOD, GPx, CAT, GST Acaricides Strachecka et al., 2016 [110]

Genotoxicity Nuclear abnormalities (NA) assay 1 Fungicides, metals, EMS Caliani et al., 2021 [43]
Primary stress

response HSP70 1 Ethanol Hranitz et al., 2010 [113]

Carbohydrates assay 2
Insecticides Bendahou et al., 1999 [96]
Insecticides Bounias, 1985 [107]

Protein amount 3
Herbicides Helmer et al., 2015 [64]
Insecticides Li et al., 2017 [90]
Insecticides Pinto et al., 2000 [106]

Lipid amount 1 Bounias, 1985 [107]

Table 3. Summary of semi-field studies divided by endpoint and contaminants.

Endpoint Test n Contaminants Reference

Morphology
Asymmetry of wing nervature, diameter of forager
bee hypopharyngeal gland, asymmetry of left and

right branches of ovary
1 Insecticides Wegener et al., 2016 [114]

Foraging activity/
fitness/production

of matrixes

Colony nutritional status

6

Acaricides Cabbri et al., 2018 [115]
Foraging activity Insecticides Colin et al., 2004 [116]
Foraging activity Insecticides, acaricides Decourtye et al., 2004 [67]

Time spent near a food source Insecticides Ingram et al., 2015 [117]
Foraging activity Fungicides, insecticides Schmuck et al., 2003 [71]

Foraging behaviour Insecticides Shi et al., 2020 [118]

Learning ability Learning capacity and long-term memory of
presumed forager bees 1 Insecticides Wegener et al., 2016 [114]

Other behaviours

Intensive cleaning, trembling, cramping,
locomotion problems, inactive bees, aggressiveness 6 Fungicides, insecticides Berg et al., 2018 [48]

Bee locomotion and social interactions Insecticides Ingram et al., 2015 [117]
Homing performances Insecticides Monchanin et al., 2019 [119]
Overwintering success Herbicides Odemer et al., 2020 [120]
Overwintering success Insecticides Siede et al., 2017 [121]

Behavioural anomalies (exaggerated motility,
discoordinated movements, trembling, shaking,

apathy)
Fungicides, insecticides Schmuck et al., 2003 [71]

Reproduction Number of capped brood cells 1 Insecticides Wegener et al., 2016 [114]
Sensory (gustatory or

olfactory) PER 1 Insecticides, acaricides Decourtye et al., 2004 [67]

Flight activity Homeward flight path
2

Herbicides Balbuena et al., 2015 [122]
Flight activity Fungicides, insecticides Berg et al., 2018 [48]

Growth and
development/brood

production

Development of bee brood

4

Fungicides, insecticides Berg et al., 2018 [48]
Brood and colony development, colony weight Herbicides Odemer et al., 2020 [120]

Number of brood cells, weight gain and production
of drones Insecticides Siede et al., 2017 [121]

Reduction in bees and brood Insecticides Thompson et al., 2019 [123]
Accumulation Chemical analysis 1 Insecticides Siede et al., 2017 [121]
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Table 4. Summary of semi-field studies divided by molecular and enzymatic endpoint and contaminants.

Endpoint Test n Contaminants Reference

Detoxification
GST

2
Insecticides Wegener et al., 2016 [114]

CYP450, CaEs, GST Insecticides Zhu et al., 2020 [124]
Neurotoxicity Trembling and paralysis 1 Insecticides Decourtye et al., 2004 [67]

Immunity
Vtg and apolipophorin (APO)

3
Acaricides Cabbri et al., 2018 [115]

Hymenoptaecin gene expression Insecticide Siede et al., 2017 [121]
Vtg Insecticides Wegener et al., 2016 [114]

Metabolism Phosphofructokinase 1 Insecticides Wegener et al., 2016 [114]
Oxidative stress GST, phenoloxydase, glucose oxidase 1 Insecticides Wegener et al., 2016 [114]

Protein amount 3
Acaricides Cabbri et al., 2018 [115]
Insecticides Wegener et al., 2016 [114]
Insecticides Zhu et al., 2020 [124]

Table 5. Summary of field studies divided by endpoint and contaminants.

Endpoint Test n Contaminants Reference

Morphology Wing asymmetry 1 Urbanisation Leonard et al., 2018 [125]

Accumulation

Chemical analysis

18

Metals Al Naggar et al., 2013 [126]
Chemical analysis Insecticides Al Naggar et al., 2015 [127]
Chemical analysis Insecticides Al Naggar et al., 2015 [128]
Chemical analysis PAHs Amorena et al., 2009 [129]
Chemical analysis Fungicides, insecticides Amulen et al., 2017 [130]
Chemical analysis Insecticides Codling et al., 2016 [131]
Chemical analysis Metals Conti and Botrè, 2001 [132]
Chemical analysis Insecticides El-Saad et al., 2017 [56]
Chemical analysis Herbicides, insecticides Fulton et al., 2019 [133]
Chemical analysis Metals Kump et al., 1996 [134]
Chemical analysis Herbicides, fungicides, insecticides, acaricides Mullin et al., 2010 [45]
Chemical analysis Trace elements Nikolić et al., 2015 [135]
Chemical analysis PAHs Perugini et al., 2009 [136]
Chemical analysis SO2 Ponikvar et al., 2005 [137]
Chemical analysis Herbicides, fungicides, insecticides Raimets et al., 2020 [46]
Chemical analysis Herbicides, insecticides, metals Ruschioni et al., 2013 [138]

Gamma spectrometry Radiations Tonelli et al., 1990 [139]
Chemical analysis Trace elements van der Steen et al., 2012 [140]

Table 6. Summary of field studies divided by molecular and enzymatic endpoint and contaminants.

Endpoint Test n Contaminants Reference

Detoxification

GST and metallothioneins (MT) 4 Trace elements Badiou-Bénéteau et al., 2013 [54]

GST Herbicides, fungicides, insecticides,
electromagnetic fields Lupi et al., 2020 [44]

GST suspended dust and heavy metals Nicewicz et al., 2020 [141]
GST, esterases, epoxyde hydrolase and

DDT-dehydrochlorinase Insecticides Yu et al., 1984 [142]

Neurotoxicity

AChE 4 Trace elements Badiou-Bénéteau et al., 2013 [54]

AChE Herbicides, fungicides, insecticides,
electromagnetic fields Lupi et al., 2020 [44]

AChE suspended dust and heavy metals Nicewicz et al., 2020 [141]
Esterases Insecticides Yu et al., 1984 [142]

Immunity Defensin 1 suspended dust and heavy metals Nicewicz et al., 2020 [141]

Metabolism

ALP and GST 5 Trace elements Badiou-Bénéteau et al., 2013 [54]
ALP and Acidic phosphatase Trace elements Bounias et al., 1996 [143]

ALP and GST Herbicides, fungicides, insecticides,
electromagnetic fields Lupi et al., 2020 [44]

GST suspended dust and heavy metals Nicewicz et al., 2020 [141]
GST Yu et al., 1984 [142]

Oxidative stress

SOD, CAT, GPx, GR 4 Insecticides El-Saad et al., 2017 [56]
SOD and CAT Trace elements Nikolić et al., 2015 [135]

CAT and GST Herbicides, fungicides, insecticides,
electromagnetic fields Lupi et al., 2020 [44]

GST and total antioxidant capacity (TAC) suspended dust and heavy metals Nicewicz et al., 2020 [141]
Primary stress response HSP70 1 suspended dust and heavy metals Nicewicz et al., 2020 [141]
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Table 6 shows molecular endpoints examined in field studies. The effect that was
studied with the highest degree of frequency concerned “detoxification” and “metabolism”,
both with 5 papers. The next two endpoints that were examined with a good degree of
frequency were “neurotoxicity” and “oxidative stress”; the first was observed through
the evaluation of AChE activity, the second mostly with the observation of CAT and
SOD activity.

4. Discussion

The exposure of honey bees to environmental pollutants, especially agrochemical
products, is causing a decline in their colonies [11,144], leading also to consequences for
crop production, food security, and environmental health. For this reason, it is important
to understand primarily both the benefits and the risks that the use of PPPs pose to the
environment in order to make decisions about agricultural management. To determine the
role of pesticides and other contaminants and their impact on honey bees it is essential to
understand the kind of studies that have been conducted until now.

The majority of studies into the effects of pollutants on bees have been undertaken
in North America and Europe, where important honey bee colony losses have been re-
ported [14–16]. However, this phenomenon should be studied globally, in order to ascertain
a better understanding of its causes. Although, PPPs tend to be most widely used in de-
veloped countries, they are increasingly being used in other parts of the world where
regulations and best practices around their environmental impacts may not be as strin-
gent [145].

The great majority of examined papers were about adult honey bees; it would be
useful for there to be an improvement in the studies conducted related to other life stages,
in order to have a better understanding of whether and how environmental contaminants
may affect every stage of a honey bee’s life cycle.

This review underlined that the majority of studies on honey bees are carried out
in a laboratory more than in semi-field and field conditions, in a controlled environment
and with controlled environmental exposure to the selected substances. The vast ma-
jority of papers about laboratory experiments reviewed focused on the sublethal effects,
mostly about foraging activity, sensorial ability, neurotoxicity, detoxification, metabolism,
and oxidative stress. In semi-field studies different responses both at macroscopic and
microscopic levels were considered; however, in this review, only 14 papers of this kind
were found. Honey bees, in the field, are exposed to multiple stressors and most of the
field papers were monitoring studies where accumulation of various contaminants in Apis
mellifera were investigated; only 8 papers [28,33,50,57,62,71,83,95] analysed the sublethal
effects of the contaminant mixtures on Apis mellifera. All these studies highlighted that
honey bees are sensitive bioindicators of environmental pollution. Therefore, it is only
through context monitoring that the honey bees decline should be examined, in order to
understand its causes and to provide effective prevention tools to administrations.

In this review, it is highlighted that the most widely investigated PPPs are insecti-
cides, because they were demonstrated to be harmful to non-target organisms, such as
honey bees. Different authors observed that neonicotinoid insecticides, such as imidaclo-
prid, thiamethoxam, acetamiprid, dinotefuran, thiacloprid, nitenpyram, and clothianidin,
are able to damage honey bees olfactory learning performances [65,76,78], foraging ac-
tivity [65,68,69], and homing flight abilities [119]. This kind of compounds may cause
neurotoxicity in honey bees, by altering AChEactivity which may be induced [97] or
inhibited [84], and by modulating carboxylesterase (CaE) activity [53,82]. Furthermore,
detoxification and antioxidant enzymes activities seem to be altered by neonicotinoids,
such GST [53,81,82], CAT [53], PPO [84], ALP [53] and CYP450 [94] activities. Moreover,
these compounds may affect the immune system for instance, by modulating the content
of vitellogenin [47,101], by reducing the hemocytes density, encapsulation response and
antimicrobial activity [83], and by modulating the relative abundance of several key gut
microbial molecules [66]. Several authors studied the effects of pyrethroid insecticides,
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such as deltamethrin, bifenthrin, cypermethrin, permethrin, and λ-cyhalotrin, on honey
bees; these compounds seems to cause neurotoxicity by increasing AChE activity [59,91],
modulating CaE activity [55]. Pyrethroids caused variations in lipid [107] and carbohy-
drates [96], reduced learning, memory performances [62,72] and foraging activity [67],
and influenced bees locomotion and social interaction [117]. This class of insecticides is
also able to cause variations in metabolic and detoxification activities, such as increasing
GST activity [89,136], modulating ALP activity [107], inducing the expression of CYP450
monooxygenase [86], and inhibiting Na+, K+-ATPase activity [96]. Moreover, they may
induce immune responses, cause changes in the activity of POD and in the content of
MDA and LPO and induce oxidative stress [59]. Authors, who studied organophosphorus
insecticides effects, observed an inhibition in the odour learning [79], a modulation of
AChE activity [75,77,84,95], a modulation of different immune system related genes and
an induction of vitellogenin transcript [86]. El-Saad et al. (2017) [56] observed midguts
ultrastructural modifications, a reduction of GSH levels, an inhibition of SOD, CAT and
GPx activities, and an increase in MDA levels.

A recent review [146] underlined that other PPPs, such as fungicides and herbicides,
that are not designed to target insects, may be factors that influence honey bees decline.
For this reason, it would be important to increase the number of studies conducted related
to their effects on these pollinators. Papers included in this review showed that the most
frequently studied herbicide was glyphosate; it seems to cause a more indirect homing
flight [122], to reduce sensitivity to sucrose and learning performance [69], to delay worker
brood development [120], to have effects on the expression of CYP isoforms genes [87],
and to slightly inhibit AChE activity [97].

Moreover, we believe that studies regarding other pollutants, such as PAHs and trace
elements, should be improved, because of their presence in the environment that could
cause honey bees exposure and adverse effects. Studies on trace elements underlined that
pollutants, like aluminum, cadmium, selenium, lead, and copper, are able to influence
foraging behavior [63,70] and the development time [51,66], to cause histopathological
alterations [57], to alter AChE, ALP, GST [43,54], CAT and SOD [107,140] activities. The Eu-
ropean Food Safety Authority (EFSA) pointed out that the study of the impact of mixtures
of chemicals also compared to non-chemical stressors, like Varroa destructor and viruses,
on honey bee health are of great relevance, in view to support the implementation of a
holistic risk assessment method [147,148].

In field studies, it is more difficult to understand the effects caused by single con-
taminants, due to the presence of multiple stressors. Up to now, few papers have in-
vestigated the sublethal effects on honey bees in their natural conditions and habitats.
Badiou-Bénéteau et al. (2013) [54] and Nikolić et al. (2015) [135] highlighted the presence
of sublethal effects, characterized by oxidative stress and the induction of detoxification
processes, in honey bees from more anthropized areas, due to the presence of neurotoxic
pollutants, such as metals. Lupi et al. (2020) [44] observed that pesticide mixtures, charac-
terized by the combination of fungicides, insecticides, and plant regulators, could cause an
increase in Reactive Oxygen Species (ROS) that can inhibit AChE and CAT activities. An in-
hibition of some antioxidant stress biomarkers (GSH, SOD, CAT, GST) was also observed
in specimens collected from anthropized areas [56]. Nicewicz et al. (2020) [141] observed
the importance of defensin and HSP70 levels as indicators of urban multistress both at
individual and colony levels. Further studies are needed to investigate the ecotoxicological
status of honey bee colonies.

Another aspect to be pointed out is that in all three types of experimental conditions
(laboratory, semi-filed and field), research studies have focused their attention on the
development of some biomarkers to assess exposure to and the effects of contaminants on
honey bees, such as esterases activity to evaluate neurotoxic effects, antioxidant enzymes
activity, and predominantly CAT and SOD, together with detoxification reactions and
metabolic activity. However, several responses, such as genotoxicity and immune system
alteration, remain poorly explored and require an increased interest and a significant degree
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of effort to ensure that research studies are conducted. Colin et al. (2004) [116] observed,
for example, that the suppression of the immune system may lead to a decrease in the
individual performance and consequently in the population dynamics and the degree of
disorders present in the colony. Moreover, Lazarov and Zhelyazkova (2019) [149] observed
that Varroa destructor infestations are responsible for the weakening of honey bees’ immune
system, which may lead to a pronounced susceptibility of honey bees to contaminant
exposure. To the best of our knowledge, Caliani et al. (2021) [43] is the only study that has
been conducted into genotoxicity and that has examined Apis mellifera; in this study, it was
observed that there are not only compounds such as EMS, with known genotoxic effects;
indeed, there are also Cd and fungicides that have effects on the presence of hemocytes
nuclear abnormalities.

While we have investigated the range of research approaches that have been used to
study potential effects of contaminants on honey bees and provided a summary of main
investigated effects (Tables 1–6), a full evaluation of effects direction was beyond the scope
of this research. As there are 106 papers included in this review it is clear that there is an
increasing corpus of literature that examines the effects of a wide range of compounds
on bees. Only when certain research gaps are addressed, may this area benefit from a
meta-analysis in the future to establish a clearer picture of the magnitude and direction of
each effect.

5. Conclusions

The current review highlighted that Apis mellifera biological responses to external
stressors were studied mostly in Europe and North America; consequently, there is a
notable need to increase monitoring in other regions. Insecticides are widely studied
compounds compared to other PPPs, or other classes such as e PAHs and trace elements.
Laboratory studies are useful in order to determine the effects of specific compounds;
however, field studies should be implemented, in order to gain a better understanding of the
ecotoxicological status of A. mellifera in relation to environmental contamination patterns.
Through the observation of the different responses examined by the authors, several gaps
have been identified that should be addressed, particularly within enzymatic and molecular
responses, such as those regarding immune system and genotoxicity. The development of
an integrated approach, supported by statistical models could be vital, in order to combine
responses at different levels, from molecular ones to the organism and the population.
This could be a valid tool to evaluate the impact of contamination on these organisms and
to support monitoring strategies not only at a scientific level, but also at a regulatory one.
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99. Glavan, G.; Kos, M.; Božič, J.; Drobne, D.; Sabotič, J.; Kokalj, A.J. Different response of acetylcholinesterases in salt- and
detergent-soluble fractions of honeybee haemolymph, head and thorax after exposure to diazinon. Comp. Biochem. Physiol. Part C
Toxicol. Pharmacol. 2018, 205, 8–14. [CrossRef] [PubMed]

http://doi.org/10.1002/etc.67
http://www.ncbi.nlm.nih.gov/pubmed/20821489
http://doi.org/10.1016/j.jinsphys.2015.09.004
http://doi.org/10.1603/0022-0493-95.2.227
http://www.ncbi.nlm.nih.gov/pubmed/12019994
http://doi.org/10.1038/srep15322
http://www.ncbi.nlm.nih.gov/pubmed/26477973
http://doi.org/10.1371/journal.pone.0049472
http://doi.org/10.1016/j.ibmb.2017.01.011
http://doi.org/10.1016/j.ecoenv.2020.111013
http://doi.org/10.1007/s13592-014-0315-0
http://doi.org/10.1016/j.jhazmat.2019.06.013
http://doi.org/10.1016/j.envpol.2018.10.030
http://www.ncbi.nlm.nih.gov/pubmed/30340169
http://doi.org/10.1016/j.jinsphys.2012.03.015
http://www.ncbi.nlm.nih.gov/pubmed/22497859
http://doi.org/10.1093/jee/99.4.1046
http://doi.org/10.1603/029.102.0202
http://doi.org/10.1016/j.pestbp.2017.06.010
http://doi.org/10.1073/pnas.1109535108
http://www.ncbi.nlm.nih.gov/pubmed/21775671
http://doi.org/10.1093/jee/toy140
http://doi.org/10.1016/j.pestbp.2019.04.014
http://doi.org/10.1016/j.ecoenv.2006.11.020
http://www.ncbi.nlm.nih.gov/pubmed/17215041
http://doi.org/10.1006/eesa.1999.1811
http://www.ncbi.nlm.nih.gov/pubmed/10571459
http://doi.org/10.1007/s11356-013-1568-2
http://doi.org/10.1016/j.ecoenv.2019.02.031
http://www.ncbi.nlm.nih.gov/pubmed/30825738
http://doi.org/10.1016/j.cbpc.2017.12.004
http://www.ncbi.nlm.nih.gov/pubmed/29258877


Int. J. Environ. Res. Public Health 2021, 18, 1863 18 of 19

100. Hashimoto, J.H.; Ruvolo-Takasusuki, M.C.C.; Arnaut de Toledo, V. Evaluation of the Use of the Inhibition Esterase Activity on
Apis mellifera as Bioindicators of Insecticide Thiamethoxam Pesticide Residues. Sociobiology 2003, 42, 693–699.

101. Suchail, S.; Guez, D.; Belzunces, L.P. Discrepancy between acute and chronic toxicity induced by imidacloprid and its metabolites
in Apis mellifera. Environ. Toxicol. Chem. 2001, 20, 2482–2486. [CrossRef]

102. Tavares, D.A.; Roat, T.C.; Silva-Zacarin, E.C.M.; Nocelli, R.C.F.; Malaspina, O. Exposure to thiamethoxam during the larval phase
affects synapsin levels in the brain of the honey bee. Ecotoxicol. Environ. Saf. 2019, 169, 523–528. [CrossRef]

103. Bedick, J.C.; Tunaz, H.; Nor Aliza, A.R.; Putnam, S.M.; Ellis, M.D.; Stanley, D.W. Eicosanoids act in nodulation reactions to
bacterial infections in newly emerged adult honey bees, Apis mellifera, but not in older foragers. Comp. Biochem. Physiol. Part C
Toxicol. Pharmacol. 2001, 130, 107–117. [CrossRef]

104. Brandt, A.; Gorenflo, A.; Siede, R.; Meixner, M.; Büchler, R. The neonicotinoids thiacloprid, imidacloprid, and clothianidin affect
the immunocompetence of honey bees (Apis mellifera L.). J. Insect Physiol. 2016, 86, 40–47. [CrossRef]

105. Christen, V.; Vogel, M.S.; Hettich, T.; Fent, K. A Vitellogenin Antibody in Honey Bees (Apis mellifera): Characterization and
Application as Potential Biomarker for Insecticide Exposure. Environ. Toxicol. Chem. 2019, 38, 1074–1083. [CrossRef] [PubMed]

106. Pinto, L.Z.; Bitondi, M.M.G.; Simões, Z.L.P. Inhibition of vitellogenin synthesis in Apis mellifera workers by a juvenile hormone
analogue, pyriproxyfen. J. Insect Physiol. 2000, 46, 153–160. [CrossRef]

107. Bounias, M. Sublethal Effects of a Synthetic Pyrethroid, Deltamethrin, on the Glycemia, the Lipemia, and the Gut Alkaline
Phosphatases of Honeybees. Pestic. Biochem. Phys. 1985, 24, 149–160. [CrossRef]
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