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PAK1 (RAC/CDC42-activated kinase 1) is themajor “pathogenic” kinasewhose abnormal activation causes awide variety
of diseases/disorders including cancers, inflammation, malaria and pandemic viral infection including influenza, HIV and
COVID-19. Since Louis Pasteur who developed a vaccine against rabies in 1885, in general a series of “specific” vaccines
have been used for treatment of viral infection, mainly because themajority of pre-existing antibiotics are either anti-bac-
terial or anti-fungal, thereby being ineffective against viruses in general. However, it takes 12–18months till the effective
vaccine becomes available. Until then ventilator (O2 supplier) would be the most common tool for saving the life of
COVID-19 patients. Thus, as alternative potentially more direct “broad-spectrum” signalling mechanism–based COVID-
19 therapeutics, several natural and synthetic PAK1-blockers such as propolis, melatonin, ciclesonide, hydroxy chloro-
quine (HQ), ivermection, and ketorolac, which are readily available in the market, are introduced here.

© 2020 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Like Polio, HIV, Ebola and Flu viruses, the currently pandemic virus
coined COVID-19 is among RNA virus family called “corona” [1,2]. Since
2020).

.

an open access article under the
RNA viruses need their RNA-dependent RNA polymerase (RdRP) for their
replication, in theory, COVID-19 pandemic could be treated effectively by
a series of RdRP inhibitors such as Remdesivir which is an ATP antagonist
and originally developed in 2019 by Gilead Sciences in California for the
treatment of Flu and Ebola viruses [1]. However, ATP antagonists in gen-
eral could potentially inhibit many other ATP-dependent enzymes such as
ATPases, protein kinases, and Chaperons, and therefore could cause a num-
ber of side effects, depending on their doses, as “conventional” anti-cancer
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Fig. 2. "Double" blows of PAK1-blockers against viral infection
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chemos (DNA/RNA poisons). Thus, ideally, far more selective chemical
drugs, which target a specific “host” enzyme essential for viral infection,
but not for normal physiology of hosts, would be desirable for the COVID-
19 treatment aswell. Among such target enzymes is themajor “pathogenic”
kinase PAK1 in hosts that is essential for malaria and viral infection in gen-
eral [3].

Mammalian family kinases called PAKs (RAC/CDC42-activated ki-
nases) were cloned more than 25 years ago. Among them PAK1 is the
major “pathogenic” kinase whose abnormal activation is responsible for a
wide variety of diseases such as cancers, inflammation, viral infection, ma-
laria, immuno-suppression, ageing, and so on [3]. Among PAK1-blockers,
caffeic acid (CA) and its ester (caffeic acid phenethyl ester = CAPE) in a
bee-product called “propolis” were the first natural ingredients that were
shown to inhibit RAC, which activates directly PAK1 [4]. Interestingly in
2005, an old anti-malaria drug “Chloroquine” (CQ) was also shown to sup-
press SARS/ coronavirus infection in cell culture with IC50 around 1 μM
[5], although the precise molecular mechanism underlying its anti-viral ac-
tivity remains unknown till recently. The anti-coronaviral effect of CQ and
Remdesivir (IC50 around 1 μM of each) was recently confirmed in vitro by a
team at Chinese Academy of Sciences as well: https://www.nature.com/
articles/s41422-020-0282-0/

In 2016, a Korean team found that the CQ up-regulates p21 (a CDK in-
hibitor) whose expression is suppressed by PAK1 [3,6]. More recently, a
tumor-suppressing phosphatase called PTEN, that inactivates PAK1, was
shown to suppresse the coronavirus-induced LLC2-dependent fibrosis
(lung inflammation) [7]. Further-more, expression of LLC2 depends on
the coronavirus receptor (called ACE2 = Angiotensin-converting enzyme
2) -induced CK2/RAS-PAK1-RAF-AP1 signaling pathway [[8], Fig. 1].
These observations altogether clearly indicate the PAK1-dependency of
coronaviral pathogenesis, and strongly suggest, if not proven clinically as
yet, that PAK1-blockers in general could be useful for the treatment of cur-
rent “pandemic”COVID-19 infection outbroken fromWohan in China since
the end of 2019, which infected over 2,000,000 people world-wide, and
whose death toll has reached over 120,000 people (death rate around
6%) till now: https://corona.help/

In addition, PAK1 is normally responsible for the suppression of im-
mune system in hosts [9]. Thus, like viral vaccine, these PAK1-blockers
could boost the immune system for the production of antibody against
this virus as well (see Fig. 2).

2. Natural PAK1-blockers

A specific vaccine (based on Louis Pasteur's approach against rabies
virus in 1885) is an effective cure for each viral infection. However, it
Fig. 1. PTEN, a PAK1-blocker, interferes with coronavirus –induced PAK1-
dependent signalling pathway leading to lung fibrosis.
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takes at least 12 months (and realistically 18months) to prepare its vaccine
(according to the WHO). Until then the majority of these coronavirus vic-
tims would perish. Thus, here as “alternative” or “unconventional” fast-
track broad-spectrum therapeutics of coronaviral infection, several natural
or synthetic PAK1-blockers readily available in the market are introduced.
2.1. The bee product “propolis”

Among them the bee product called “propolis” is the most popular and
ancient as well. It has been used as a traditional medicine for more than 4
thousand years since the ancient Egyptian era. The father ofmedicine in an-
cient Greece, Hippocrates, was the first to coin this bee product (an alcohol-
extract of beehives) “propolis” (“pro” for protection, and “polis” for beehive
or city). Originally honey-bees extract something from young buds of trees
such as poplar and willow and blend the extract with their saliva to make
the hexagonal beehive to protect their larva from various pathogens.
Thus, propolis is a “herbal” medicine prepared by bees. It is both anti-
bacterial and anti-viral. It is well known to be used as a mixture of antibi-
otics for preparing mummies of deceased royal families to be stored
under pyramids.

In modern era, propolis was recognized as an anti-cancer medicine in
late 1980s by a team at Columbia University in NYC [10]. The major
anti-cancer ingredient in Egyptian or Israeli propolis turned out to be
CAPE, an ester of caffeic acid [10] which was later known to down-
regulate RAC, thereby inactivating PAK1 [4]. Interestingly, however, the
anti-cancer ingredients in propolis vary from one product to another, de-
pending on where bees harvest the extract. The major anti-cancer ingredi-
ent in Brazilian green propolis is artepillin C (ARC), whereas those in
subtropical propolis from Okinawa or Taiwan are polyphenols called
Nymphaeols which directly inhibit PAK1 [11].What is common to all prop-
olis is that they contain PAK1-blockers without any exception.

Since PAK1 is responsible not only for cancers, but also for infection
with a wide variety of viruses such as influenza, HIV, pappiloma virus
and SARS/coronal virus in generally, as well as immune-suppression
[3,9], propolis would be useful for blocking coronavirus-induced fibrosis
of lungs and stimulating the immune system as well.

However, the potency of propolis varies from one product to another,
depending on both chemical nature of ingredients and their content.
Among propolis in themarket, so far the CAPE-based NewZealand propolis
called “Bio 30” (alcohol-free liquid, 25%) is the most potent [3]. Its recom-
mended daily dose is 1 ml (250 mg) /10 kg (body weight). Unfortunately,
however, its stock is rather limited for COVID-19 patients, because it has
been saved mainly for therapy of deadly pancreatic cancers and the life-
long treatment of a rare genetic brain tumor called NF (neurofibromatosis
types 1 and 2). Furthermore, the cell-permeability of both caffeic acid
(CA) and ARC is rather poor, mainly due to their COOH moiety. Thus, a
few years ago, via Click Chemistry (CC), we managed to boost their cell-
permeability by making their 1,2,3-triazolyl esters (called 15A and 15C),
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which are 100 and over 400 times more potent than ARC and CA, respec-
tively [12].

2.2. Pineal hormone “melatonin”

Melatonin, a serotonin derivative from pineal glands was first
recognized as an anti-melanogenic hormone by Aaron Lerner at Yale Uni-
versity in 1953 [13]. A few years ago, we found that melanogenesis in
fact depends on PAK1 [14]. Melatonin shares a wide variety of other anti-
PAK1 activities such as anti-cancer, immune stimulative, anti-infectious,
anti-inflammatory, analgestic, sleepy etc. Thus, it is almost certain thatmel-
atonin, a popular sleeping pill for jet-lag treatment, could be very useful for
the treatment of coronaviral infection as well. In fact, the world-leading ex-
pert in melatonin, Russel Reiter, recently high-lighted melatonin as an al-
ternative or adjuvant COVID-19 therapeutic: https://www.ncbi.nlm.nih.
gov/pmc/articles/PMC7102583/

2.3. Glucocorticoid hormone “Ciclesonide”

Ciclesonide is used to treat inflammatory disesaes such as asthma and
allergic rhinitis. It is marketed under the brand names Alvesco for asthma
etc. It was patented in 1990 and approved for adults and children 12 and
over by the FDA in 2006. Regarding the molecular mechanism underlying
its anti-inflammatory effect, it is most likely that this hormone blocks
PAK1, mainly for following reasons: (i) first of all, inflammation in general
requires PAK1 [3], and in PAK1-null mutant of mice no inflammation takes
place [15], (ii) ciclesonide (10 mg/kg/day) almost completely suppresses
the PAK1-dependent growth of lung cancer (A541 cell line) xenografts in
immune-deficient mice as well [16], and (iii) this hormone was recently
shown to block both PAK1-dependent replication and pathogenesis (fibro-
sis = lung inflammation) blocks COVID-19 pathogenesis clinically [2]:
https://writening.net/page?FC3QPm

2.4. Triptolide from thunder god vine and its water-solulble derivative

A herbal triterpene or steroid called “Triptolide “from thunder god vine,
a Chinese traditional medicine, was also found to inactivate RAC, thereby
blocking PAK1 [12]. Interestingly, more than a decade ago, triptolide was
found to suppress virus production during dengue virus infection of
human lungs by blocking PAK1 signaling pathway [17]. However, its
water-solubility is rather poor. Thus, several years ago, a team at University
of Minnesota led by Gunda George, a German organic chemist, phosphory-
lated OH group at position 14 of Triptolide to boost its water-solubility over
3000 times [18]. The resultant phosphatase-sensitive prodrug of triptolide
called “Minnelide” is currently in clinical trials for cancers. Thus, both
Triptolide and Minnelide would be potentially useful for treating
coronaviral infection as well.

2.5. Ivermectin from soil bacterium (Streptomyces avermitilis)

Around 1975 Avermectin (a precursor of Ivermectin) was discovered
from a soil bacterium by a team led by Satoshi Omura at Kitasato Insti-
tute in Tokyo, but it causes a side effect. Thus, to reduce its side effect, a
Merck team led by William Campbell chemically reduced it to develop
“Ivermectin” (dihydro-Avermectin), sharing the Nobel prize in 2015.
It was eventually marketed by Merck into medical use in 1981. It has
been used to treat many types of parasite infestations including head
lice, scabies, river blindness (onchocerciasis), etc. Three decades after
its discovery, it was shown by a Russian team to suppress the growth
of cancers as well, and eventually we found that inactivation of PAK1
is the major molecular mechanism underlying its anti-cancer action
[19]. Thus, it could potentially serve as an alternative (and inexpensive)
therapeutic to eradicate the PAK1-dependent coronaviral infection as
well. In fact, very recently Ivermectin was proven to block the COVID-
19 infection in Vero cell culture with IC50 around 2.5 μM: https://
www.sciencedirect.com/science/article/pii/S0166354220302011
3

Very interestingly, the IC50 against COVID-19 is basically same as IC50

against the PAK1-dependent growth of cancer cells [19], strongly suggest-
ing, if not proven as yet, the PAK1-dependency of COVID-19 replication.

2.6. Artemisinin: anti-malaria from an old Chinese medical herb

In 2015 a Chinese scientist, Youyou Tu at Chinese Academy of Science,
shared a Nobel prize in medicine for her discovery of anti-malaria com-
pound called “Artemisinin” (AM). This compound was originally isolated
by her “523” project team from the plant Artemisia annua, sweet worm-
wood, a herb employed in Chinese traditional medicine around 1972. Al-
though the precise molecular mechanism underlying its anti-malaria and
anti-viral action still remains rather unclear, the target is not the pathogens
(Plasmodium falciparum or virus) themselves, but some thing in host cells,
most likely PAK1 or its up-stream essential for both malaria and viral infec-
tion [20,21], based on the following observations: (i) the AM suppresses
both RAS (up-stream of PAK1) and RAF (down-stream of both RAS and
PAK1) in T-cells [3,22], and (ii) the dihydro derivative of AM suppresses
the growth of pancreatic cancer cells by up-regulation of p21 (a CDK inhib-
itor) whose expression is suppressed by PAK1 [3,20].

2.7. Extract of Chinese (Sichuan) Pepper (Hua Jiao)

Chinese reddish peppercorns from Sichuan Province called “Hua Jiao”
are among traditional spices used for the preparation of an old spicy Chi-
nese cuisine called “Marbo-beancurd”. In 2006, we found that 70% ethanol
or hot (above 45 °C) water extract of Hua Jiao inhibits PAK1 with IC50

around 10 μg/ml, and thereby suppressing cyclin D1 expression in both
NF1-deficient triple negative breast cancer (MDA-MB-231) and MPNST
cell lines in which PAK1-is abnormally activated. Just like the propolis
“Bio 30”, this reddish extract (110 mg/kg, twice a week) strongly sup-
presses the growth of these cancer xenografts in mice [23]. Thus, it is
most likely that daily drinking of an inexpensive “Hua Jiao” tea (extract)
could potentially contribute to both prevention and cure of COVID-19 in-
fection, although its major PAK1-blocking ingredient has not been chemi-
cally identified as yet. For detail of health benefits from this peppercorns
(promoting immune system, suppressing inflammation etc), click the fol-
lowing website: https://www.organicfacts.net/sichuan-pepper.html

2.8. FK228 (Istodax): Blocking HDAC-PAK1 pathway

A ring peptide called FK228 was isolated from a soil bacterium by a
team of Fujisawa Pharm around 1995. It strongly inhibits the growth of
so-called RAS cancers such as pancreatic and colon cancers which carry on-
cogenic mutant of Ki-RAS [24]. A few years later it was found to inhibit di-
rectly HDAC (histone deacetylase) with IC50 around 1 nM [24]. Around
2005, we found that FK228 inactivates PAK1 in several cancer cells includ-
ing Tamoxiphen-resistant breast cancers and NF1-deficient MPNST (malig-
nant peripheral nerve sheath tumor) with IC50 below 1 nM in cell culture,
and suppresses their growth with IC50 below 2.5 mg /kg (i.p., twice a
week) in xenografts in mice [25]. Around 2009, it was approved by FDA
for the treatment of a rare cancer called Cutaneous T-cell Lymphoma
(CTCL) etc., and sold by Celgene under the brand name “Istodax”. Thus,
it is most likely useful for the therapy of COVID-19 infection as well.

3. Synthetic PAK1-blockers

3.1. Anti-malaria drugs: Chloroquine (CQ), and Hydroxychloroquine (HQ)

As previously described, CQ suppresses SARS/coronal viral infection in
cell culture with IC50 around 1 μM [5], by upregulating p21 whose
expression is suppressed by PAK1 [3,6]. However, due to CQ-resistance,
CQ is no longer used for malaria treatment, Instead, its derivative called
Hydroxychloroquine (7-chloro-4(4-(N-ethyl-N-B-hydroxyethylamino)-1-
methylbutylamino)-quinoline diphosphate (HQ) has been more widely
used for malaria treatment. Thus, shortly after one of us (HM) urged both

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7102583/
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Fig. 3. Effective daily dose for COVID-19: 600mg.
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theWhite House and NIH to use a series of PAK1 blockers including HQ for
the treatment of coronaviral infection, FDA quickly approved to use HQ or
CQ for clinical trials for COVID-19 patients in NY City, the hottest-bed of
COVID-19 in US. According to a French team's clinical trial for 30–40
COVID-19 patients, the effective daily dose of HQ was found to be around
600 mg [[26], see Fig. 3]. Very interestingly, the combination of HQ and
another old anti-malaria drug called Azithromycin (AZ) was far more effec-
tive than HQ alone clinically [26]. AZ is a macrolide discovered 1980 by
Pliva and approved for medical use in 1988. In 2017, AZ was found by a
Chinese team at Wuhan to block VEGF/PAK1-dependent angiogenesis
with IC50 below 5 μM [27], strongly suggesting that AZ is also a PAK1-
blocker.

3.2. Ketorolac: an old pain-killer

An old pain-killer called “Toradol” is a racemic (1:1) mixture of S- and
R-forms of ketorolac. Since S-formdirectly inhibits COX-2which is essential
for synthesis of prostaglandin, it has been used as a pain-killer. However, a
few years ago, R-form was found to down-regulate RAC, thereby
inactivating PAK1 [28]. Thus, “Toradol” also could be used for the treat-
ment of PAK1-dependent coronaviral infection. However, due to its
COOH moiety, its cell-permeability is rather poor (with IC50 around 13
μM against A549 lung cancer cell line). Thus, via Click Chemistry (CC),
we have boosted its cell-permeability over 500 times (with IC50 around
5–24 nM against B15F10 melanoma and A549 lung cancer cells, respec-
tively) [29]. The resultant potent PAK1-blocker, called 1,2,3-triazolyl
ester of Ketorolac (15 K), suppresses both growth and metastasis of
chemo-resistant human pancreatic cancer xenogrfats in mice with IC50

below 0.1 mg/kg/day, and causes no side effect even at 5 mg/kg/day
[30]. Thus, 15 K could be used not only for pancreatic cancer therapy,
but also for therapy of infectious diseases caused by coronavirus (COVID-
19) and many other deadly viruses in the future.

3.3. Vitamin D3 and its derivative (MART-10)

The most widely known pharmacological activity of Vitamin D3 is
calcemic, i.e., stimulating the absorption of calcium into bone tissues. How-
ever, around late 1980s, a team in Melbourne found that Vitamin D3 can
suppress the growth of cancers in mice fed with calcium-less diet [31].
However, clinically therapy of cancers with Vitamin D3 has never been suc-
cessful. The main reason for its clinical failure is that Vitamin D3 is
inactivated by an enzyme called CYP24 which hydroxylates at position 24
of Vitamin D3 in human body.

Thus, around a decade ago, a Japanese group led by Atsushi Kittaka at
Teikyo University in Tokyo developed a derivative called “MART-10”
which is very resistant to CYP24 and clearly less calcemic [32]. The
“MART-10” is 1000 times more effective than Vitamin D3 in human breast
and pancreatic cancers [32]. Interestingly, a few years ago, a German group
at Tuebingen University found that Vitamin D3 down-regulates RAC,
thereby inactivating PAK1 and leading to depolymerization of actin
4

filaments [33]. IndependentlyMART-10was also found to induce the depo-
lymerization of actin in cancer cells [34]. Furthermore, CYP24 expression
turned out to depend on the oncogenic RAS-PAK1-NFκB/Ets signalling
pathway [35]. Thus, it is most likely that either “MART-10” alone or a
combination of Vitamin D3 and a CYP24-resistant PAK1-blocker such as
propolis could be potentially useful for the treatment of coronaviral
infection.

4. Concluding remarks

According to the case in China, more than 90% of COVID-19 patients re-
covered from its illness in 3 months with the death rate around 4%, under
strict nation-wide curfew or lockdown. In other words, when its vaccine be-
comes available sometime in 2021, 12–18 months after its outbreak, it is
most likely that the vaccine would be no longer useful in a practical sense.
Thus, non-vaccine “fast-track” therapeutics would be definitely needed for
solving such a pandemic viral infection as soon as possible. Here we intro-
duced the pre-existing natural or synthetic compounds known to inhibit
PAK1 directly or its up-stream, thereby potentially blocking coronaviral in-
fection or pathogenesis. Among these PAK1-blockers, at least CQ and Iver-
mectin have been proven to block the replication of COVID-19 in Vero cell
culture with IC50 ranging 1–3 μM, and a combination of HQ and AZ or
ciclesonide alone have been shown clinically to ease the pathogenic symptom
of this virus. Thus, we would urgently encourage world-leading viral experts
to test whether the rest of PAK1-blockers listed here also directly block the
replicaion of this virus in cell culture, and if so, test their anti-COVID-19 effi-
cacy clinically in an attempt to save over 2 million victims world-wide. . In
this context, it should be worth noting that a recent large-scale clinical trial
of a propolis for COVID-19 patients in Netherlands appears to be successful
for easing their viral pahthogenesis: https://osaka20420.blogspot.com/
2020/04/propolis-therapy-of-covid-19-letter.html.

Furthermore, in addition to its promotion of viral infections in general,
PAK1 contributes to the suppression of both B-cell and T-cell based immune
systems which normally produce a series of specific antibodies against vi-
ruses [9]. Thus, PAK1-blockers could knock-out each virus with “double”
punches (Fig. 2). Lastly it should be high-lighted that the major purpose
of PAK1-blockers for clinical application such as therapy of viral infection
is to reduce the virus-induced abnormally activated PAK1 to the “normal”
level (instead of “null” level) in patients suffering from PAK1-dependent
diseases. Thus, it is very unlikely that such a cautious measure/approach
would cause any serious side effect.
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