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Multidrone matings

Until 1944 when W. C. ROBERTS showed that it is com-
mon for queens to make more than one mating flight, and V.
V.TRYASKO in 1951 proved by measurement of semen in the
oviducts of queens returning from their mating flight that
the queens had mated with more than one drone, it was belie-
ved that queens mate with only one drone. The discoveries of
ROBERTS and TRYASKO explained partially at least why it
is necessary to inseminate queens with semen from several
drones to obtain normal or near normal inseminations.

Sex determination

The “spottiness” that characterized the brood of so many
inseminated queens before 1952 was considered a reflection
of deficiencies in the-insemination technique. MACKEN-
SEN’s 1951 report on viability and sex determination in the
honey bee established that spottiness is not a defect in inse-
mination technique butis a consequence of the peculiarity of
sex determination in bees. The multiple mating and sex de-
termination contributions are of such fundamental impor-
tance to instrumental insemination as well as to bee genetics
and bee breeding that they should be considered part of in-
strumental insemination methodology.
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Fig. 8 — a) Last ever-
sion stage of the en-
dophallus of first
drone. The mating
sign is introduced
into the queen; b) Po-
sition of the mating
sign into the queen;
c) Last stage of ever-
sion of the endophal-
lus of the second
drone: the mating
sign of the first dro-
ne is glued to the one
of the second drone,
while it gives off its
own mating sign;
B — bulb; BZ — mating
sign; CD — dorsal chitinous
plates; Co — horns (cor-
nua); FA — feathery appen-
dage; RF — hairy rhomb
field; S — sting; STA — vul-
nerable apparatus
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neral, by pressing the abdomen, when the bulb is everted the

semen and mucous are also ejected, while the chitinous pla-

_ tes — the outer coating of the mating sign — remain inside
the bulb.

Attempts are also being made for optimizing the collec-
tion of semen.

In conclusion, it is obvious that instrumental insemina-
tion is a highly advanced technique having been successfully
and routinely utilized on a large scale, for several decades.
However, constant perfection by new findings and by brin-
ging it the closest possible to the natural mating are impor-
tant targets.






















































Fig. 19— Queen’s block (according to Ruttner).
Assembled on left, from lateral position. On right without stopper, having in front queen’s support and ente
ring tube.
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Fig. 20 — Ventral hook (left) and sting’s hook (right)

—_

Hooks and their mounting

The standard sizes of the hooks are given in Fig. 20. Parti-
cularly the sting hook must be made so accurately as to preci-
sely fit into the sting chamber. Because its very thin neck it
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e. An apparently normal female is produced from stored
sperm, but the queen is sterile and produces only non hat-
ching eggs. Harbo (1986) found that this sterility, found in
about 3% of the queen progeny, was caused by the cryopro-
tecting chemical, dimethyl sulfoxide (DMSO), and not by the
freezing process.

5. Present Use of Sperm Storage

Routine long-term storage of bee sperm (storage for 6
months or more) is not used anywhere. Although problems
remain for storage of bee sperm in liquid nitrogen, nitrogen
storage shows more promise than other methods, and consi-
derable progress has been made in the past 15 years. For
example, honey bee sperm can survive the harsh transition
from room temperature to —196°C, methods for handling
and storing semen have been developed, and various levels of
damage to sperm have been identified and can be used as gui-
delines for evaluating future results.

In contrast, short-term storage (storage for 1 week or
less) at nonfreezing temperatures is widely used. This inclu-
des semen that is shipped, semen that is collected into syrin-
ges or storage tubes and used the following day, and semen
that is diluted and mixed (perhaps centrifuged as KAFTANO-
GLU and PENG [1980] and MORITZ [1983] suggest) and used
later the same day.
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angle (do not take up semen Fig. 26). When semen adheres to
the tip, the drone is pulled away from the syringe slightly
without breaking contact so that the semen will continue to
adhere to the tip. When withdrawing the plunger the semen
will flow easily and fast toward the capillary tip. This proce-
dure avoids taking up the mucus into the syringe. Mucus is
too viscous to pass into the tip. Taking up mucus requires
greater efforts, which an experienced operator notices at
once. Therefore, when the beginner sees that the loacking of
the syringe requires greater effort he must stop in order to
avoid obstruction of tips which are very difficult to clear.
When this happens the plunger must be pushed out to remove
the mucus. If it is not removed, moistening of the tip with a
sterile cotton soaked in a buffer solution will often help.

Fig. 26 — Drawing of sperm
a) first the buffer solution is drawn out from the syrin-
ge (F) and afterwards an air bubble is sucked up; b) the
S sperm surface found on the drone’s endophallus is
very carefully drawn nearer the point of the insemina-
tion syringe; c¢) the sperm is absorbed, yet without in-
troducing the point into it. The air bubble should be
found in between the buffer solution and the sperm
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tion, irregular laying and so on. Survival of instrumentally
inseminated queens was slightly lower in all the three conse-
cutive years. KONOPACKA (1986, 1987) also reported that
instrumentally inseminated queens survived in a little lower
percentage than the naturally mated ones, but also in this
study the queens were not treated identically before the inse-
mination.

Table 7
Survival of IT and NM queens in Czechoslovakia from 1961 — 1980

Number of surviving queens

Year NM )i X
0 1483 (100%) 672 (100%)
1 860 ( 58%) 336 ( 50%) 4.72%
2 400 ( 27%) 101 ( 15%) 27.52%%
3 89 ( 6%)) 7( 1%) 25.23%%
* P<.05
** p<.01

WILDE (1986) treated queens equally before II. He could
not find any statistical significant difference in the survival
of NM and II queens after two years.

Honey Production

Does instrumental insemination have any effect on ho-
ney production ? Of course, a good method of instrumental
insemination must be used before one can compare instru-
mentally inseminated with naturally mated queens. Again,
there is no point in comparing naturally mated with poorly
artificially mated queens.
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dark major alleles appeared to be different from that origi-
nally described, symbols were changed into yy, for black and
Vac for abdomen castanho.

Very useful as marker is the body colour mutation cordo-
van (cd). Here brown replaces all black pigment area. So it
may be considered as epistatic to the black pigment within
the expression of all three major body colour alleles Y, yb!
and y2c. RUTTNER (1976) reported albino drones with un-
pigmented integument but with normal dark eyes.

Three body hair mutations, erbliche Schwarzsucht (S;
DREHER 1940) hairless (h; MACKENSEN 1958) and
HAARLOS (H; RUTTNER 1976) are described. Hairless is
linked with ch (4.1% crossing over; MACKENSEN 1958).

Six wing mutations were found: Droopy (D; ROTHEN-
BUHLER, GOWEN and PARK, 1952b), Rudimental wing
(Rw; HACHINOHE and ONISHI, 1953), short wing (sh;
KERR and LAIDLAW, 1956), truncated (tr) and wrinkled
wing (wr; LAIDLAW, El BANBY and TUCKER, 1965 b) and
diminutive (di; LAIDLAW 1966). These mutations are mostly
linked with lethals, or are semilethal. Rw and i are linked
with 31% crossing over (HACHINOHE and ONISHI, 1953).
Several other mutants have been recorded but not yet publis-
hed (See Table 8).
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Table 8

List of mutations and some other genes in the honeybee

ne. compound eyes and ocelli
roselo. eyes brown or normal,
ocelli glass white

Symbol Name of mutation Author Aspect Characteristics
1 2 3 4 5
Eye colour
—_ white 1930 Mikhailoff white probably ivory
bk brick 1953 Laidlaw, Green, Kerr newly emerged bee (ne.) bk;ch?interact buff, bk;ch” and bk;ch®
brick-red, later on (lo.) red brown interact pink (Laidlaw et al., 1953, 1964),
exist semilethal, hypostatictoi, to cr,and
to s (Mackensen, 1958) hypostatic to s*
(Laidlaw, etal, 1964)
by bayer Laidlaw (unpublished work) ne. white, loreddish-orange noallele to bk, ch, cr, g, i, pe, sp
ch chartreuse 1952 Rothenbuhler, ne.yellow green, lo. olive hypostatic to i, to crand to s Rothen-
Gowen, Park green-reddish to reddish brown buhleret al. 1952), linked to h, crossover
4.1 (Mackensen, 1958)
ch! chartreuse-1 1953 Laidlaw, Green, Kerr like ch—slightly darker allele to ch, affected by m and interact
brown (variable) brown, ch!/ch’intermediate, (Laidlaw et
al, 1953), recessive to ch¢, dominant to ch®
(Laidlaw et al., 1964)
ch? chartreuse-2 1953 Laidlaw, Green, Kerr like ch, greener, lo.reddish  allele to ch, ch?/ch’intermediate, ch?;
to reddish brown bk interact buff,
hypostatictoiand to s'(Laidlaw etal,
1953,1961)
ch® Bensongreen 1964 Laidlaw, El Banby, like ch?, but ne. greener, allele toch,recessive to ch!
Tucker lo. olive green to reddish
ch® cherry 1964 Laidlaw, El Banby, worker bees dark red, allele to ch, dominant to ch?, bk; ch¢,
Tucker yellow to red brown interact pink
(veryvariable)
1 2 3 4 5
chli chartreuse 1981 Soares ne. light yellow, lo. allele to ch, ch¥/chlight red chli/ch¢light
-liméc reddish-brown cherry, ch'/chByellow green (Soares
1981)
ch” red 1953 Laidlaw, Green, Kerr ne. purplered,lo.redbrown allele to ch, ch!/ch”and chz/Ch.’
intermediate,
ch; bk interact pink, hypostatic to i
(Laidlawetal. 1953)
cr cream 1952 Rothenbubhler, white epistatic to ch (Rothenbuhler etal. 1952),
Gowen, Park to bk (Mackensen 1958) and to s (Laidlaw
etal 1964), linked to pe, crossover 0.33
(Laidlaw et al. 1956).
4 garnet 1964 Laidlaw, E1 Banby, ne. garnetred, lo. dark even
Tucker in wild type
i ivory 1952 Rothenbuhler, Gowen, white epistatic to ch/Rothenbuhler etal.
Park 1952), to ch? and ch” (Laidlaw et al. 1953),
to bk (Mackensen 1958), and to s (Laid-
law et al. 1964), partly recessive to i*
(Laidlaw et al. 1965)
o rose Laidlaw (unpublished work) ne. clear rose pink, lo. pink  homozygous do not fly to mate
L umber 1965 Laidlaw, Tucker ne. peach pink, lo. yellow- allele to f, partly dominant to i
reddish-brown
oc ocelos claros 1977 Chaud-Netto



2

3

4

5

epistatic to brick s'4; chinteract buff s@;

sla laranja 1973 Woyke, 1982 Soares, ne. clear orange, lo. reddish
Chaud- Netto brown i white and 5'%; g ivory (Woyke 1973), s%;
ch"reddish (Chaud-Netto 1975), s9/s
reddish (Soares, Chaud-Netto 1982)
m modifier 1953 Laidlaw, Green, Kerr brownish at chl-animals affectch!, ch’; minteractbrown
P pink 1963 Cale, Gowen, Carlile rose pink partly semilethal
pe pearl 1964 Laidlaw, El Banby, white linked to cr, crossover 0.33 (Laidlaw et
Tucker al. 1965)
'l snow 1952 Rothenbuhler, Gowen, white (cannot be distin- epistatic to ch/Rothenbuhler etal.
Park guished fromivory, cream 1952), and to bk, exist semilethal
and pearl) (Mackensen 1958)
sp spade Laidlaw (unpublished work) ne.rose pink, lo. red (similar noallele to bk, ch, cr, g, i, pe, by
to bk)
st tan 1964 Laidlaw, El Banby, ne. white, lo. brightyellow-  alleleto s, s/s'is red, epistatic to ch?and
Tucker brownish bk, hypostatictoiand cr
Eyeshape
—_ cyclops 1936 Lotmar cvklops eyes dominant, transmitted infrequently via
eggs (Lotmar 1936, Kerr and Laidlaw
1956, Laidlaw etal. 1965).
— eindugig 1975 Dustman one compound eye missing
e eyeless 1965 Laidlaw, Tucker no facets males sterile, lack of testes, semilethalin
hemizygote
f facetless 1930 Mikhailoff no facets males have small sterile testes
rf reducedfacet 1956 Kerr, Laidlaw atrophied eyes owing small  inherited complex in low frequency
number of facets with bk or g (Laidlaw etal. 1965).
2 3 4 5
Body pigment
a albino Ruttner (u blished work) n i dintegument, lete sper: i ilethal
non-sclerified, normal eye
pigment (Fig. 56)
cd cordovan 1951 Mackensen, Nolan colour similar to that epistatic to the black pigment within the
of leather expression of major body colour alleles
Y. ybl and y*¢
Y yellow 1977 Woyke major yellow body dominant to y*‘andy®’; modifiable by
colourallele poligenes over wide range (Woyke 1977)
v abdomen 1969 Kerr, 1977 Woyke major body colourallele, sex v%In J J black y®</ye¢2n 9 @ black, o’d‘
castanho limited, expressed asdarkin females yellow, v2¢/Y 2n ? g and fe-
haploid and diploiddrones,  males yellow, mofifiable by poligenes
and as yellow in females (Woyke 1977)
Body haires
S schwarzuchtig 1940 Dreher no down dominant to wild type
h hairless 1958 Mackensen nodown recessive to wild type, semilethal in
drones, linked to ch, crossever 4.1
H Haarlos Ruttner (unpublished work) no hairs, hair ontomentum  bristles (pollen rake) are brittle, the
exists (Fig. 58) viable heterozygous workers produce
small lellets. Hemizygotes ( 9Q )
arelethal
Wings
D Droppy 1952 Rothenbuhler, Gowen, flatseparated wings, dominant to wild type, lethal in hemi-
Park cannot fly zygote and homozygote 99
di diminutive 1966 Laidlaw (unpublished)  small wing, normal venation when flying workers and § J produce

a high tinkling sound, homozygous 2 2
do not fly (Witherell and Laidlaw 1977)
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< I

Rw

sh

wr

sps

X

Rudimental
wing

1953 Hachinohe, Onishi

short 1956 Kerr, Laidlaw

truncate 1965 Kerr, 1965 Laidlaw, E1
Banby, Tucker

wrinkled 1965 Laidlaw, El1 Banby,
Tucker

Sting

splitsting 1977 Soares

Disease

resistance .

removing 1964 Rothenbuhler

unc 1964 Rothenbuhl

Viability

lethal 1953, Hachinohe, Onishi

Sex

sexalleles

atrophied wings

small wing, bees cannot fly,
abnormalvenation

the winglooksasif cutinthe
middle, bees cannot fly,

abnormalvenation
“rumpled” wing

lancets separated from stylet

hygienic behaviour

hygiehic behaviour

dead in early stage

1951 Mackensen, 1963 Woyke sexdetermination

dominant to wild type, linked to [,
crossover 31

semilethal (Laidlaw etal. 1965)
semilethal

incomplete penetrance;increase by
combination with bk

low penetrance, frequency of 3.5%
raised to 62.0% after selection
(Soares 1981)

Q9 workers remove dead brood

9? workers uncap cells with dead brood

linked with Rw,crossover 31

hemizygous — haploid drones hetero-
zygous — females homozygous — diploid
drones (Wovke 1962), 2n JJ‘ larvae 0@
eaten by workers (Wovke 1963)






Table 9

Origin of unusual honey bees hitherto described

1. From uninseminated egg

.

Mosaic male

I\

990

Parthenogenetic female

o

Gynandromorph with mosaic
male tissues

o

2. From inseminated egg
2.1. One sperm takes part in the origin of a bee.

Diploid male

Gynandromorph with matro-
clinous male tissues

e

2.2. More sperms take part in the origin of a bee.

Gynandromorph with di-
ploid female patroclinous tis-

a sue
Gynandromorph with
patroclinous male tissue

b or
Mosaic male with some diploid
tissues

Mosaic female

Mosaic female with diploid
parthenogenetic tissues

/ sperm e eggpronucleus

TR RR

11

Tucker 1958, Woyke 1962

Mackensen 1943, Tucker 1958,
Woyke 1962, Tryasko 1965

Tucker 1958

Woyke 1963, 1965

Mackensen 1951, Woyke 1962,
Drescher, Rothenbuhler 1963

Laidlaw, Tucker 1964

Rothenbuhler et al 1952, Ro-
thenbuhler 1957

Drescher, Rothenbuhler 1964

Taber 1955, Woyke 1962

Wovke, 1962

@ or d’ zypote


















Table 10
Scheme of the crossing of a heterozygous queen for 3 mutant characteristics with a drone with 3 mutant characteristics

Queen Drone
cdivdi x cdi*di
++ 4+

Queen gametes
cd dridicved A8 Ritied S dl T i AvedD ocdivil S W e bt di S i Rk

Worker
genotypes ed 1* di ed I +cd + di-+ P di cd + + + AW + + o+ d + + +
cdivdi ed v i fed 4% Ridcd Si%T VAR Ved Ht @i fed) v (div edlCive ddied. dWe dif edd 3% Sdi
pheno-
types: ced i* di, ed i* +, cd + di, + it di, cd + +, + A" +, + + 4, + + +

cd = cordovan (body colour)
i¥ = umber (eye colour)
di = diminutive (wing length)





















queens and drones necessary for obtaining the next genera-
tion. If a small number of colonies is selected, the selection
intensity is high but the inbreeding coefficientalso increases
fast. If too many colonies are selected, inbreeding will be
avoided but no genetic progress will be achieved. But becau-
se heritability, inbreeding depression and size of the popula-
tion can be determined, an optimal selection programmes for
a certain period of selection can be designed. In Fig. 34 the
optimum number of colonies to be selected are given with
instrumental insemination (mixed semen procedure) and
mass selection (selection of the best colonies irrespective of
their kinship) being performed. In honey bees, mass selec-
tion appears to be simplest, the most commonly used, and of-
ten the best method of selection, but only as long as inbree-
ding does not exceed 25% (MORITZ, 1986¢).

a]‘
30
20 =
10
o AR T RN RN~

Fig. 34 — The best number of queens Q which should be selected in case of a mass se-

lection/generation
A selection rate of 0.35 was chosen for honey output. At its base there is a testing capacity of 50 colonies. Selec-
tion’s period (in generations on K coordinate) is of outmostimportance. The shorter the selection experiment the
smaller Q
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*mother”

*family”’

Fig.38—Schematic representation of the i-th family. Each triangle represents a colo-

ny.
A line joining two triangles indicates a mother-daughter relationship between the queens of the two colonies

between sisters covariance and the aunt-niece covariance,
the formula for the index Jij may be written as follows:

Ji=[(T—A)/(1—C)](m;;—m; )+ [(T+11A)/(1+11C)]m;  (6)

With plausible values for covariances (T=0.200, C=0.129,
A=0.058), this would give:

J;;=0.163 (m;;—mi.)+0.348 m;
Theoretical response to selection

Once a selection index has been defined, the theoretical
response to selection can be predicted. The total genetic pro-
gress in one generation is the sum of the genetic progress via
the female line plus that via the male line.

Female genetic progress

With the above definition of the selection index, the fe-
male genetic progress is simply the product of the intensity
of selection times the standard deviation of the selection in-
dex:

AGg=ioJ

The intensity of selection is a function of n (family si-
ze=number of colonies per family), s (number of selected co-
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corresponding intensity of selection is lower. Also, with a
higher value of B, the benefit for the surrounding population
is superior and this is profitable to the selected population
since the external drones progress more rapidly.

The formula for 8 can be written as follows:

B = rD/(rD+E)=D(D+(E/r))

D is the number of drone producing colonies, E is the
number of exterior colonies which drones may mate with
queens from the selected population, and r is the ratio of the
number of drones produced by a colony which is artificially
induced to produce drones, compared to the number of dro-
nes naturally produced in a colony. In figure 39, a ratio of
30:1 has been assumed.

0.7

0.6 4

0.5 4

o

0.3 4 Esr

0.2 4 L o Fig. 39 — Genetic level of selected (upper
curves) and surrounding (lower curves)

' populations as a function of generation.

i The two numbers at the right correspond to the number
e of colonies selected respectively for queen and drone
T 5

s 10 15 20 25 @ production

Influence of inbreeding

One way to study the influence of inbreeding in the selec-
ted population is to establish the recurrence equations for
average inbreeding coefficients (coefficients of consangui-
nity and coancestry) from one generation to the next. This
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Polyspermy — Penetration of an egg by
more than one spermatozon

Recessive — A member of an allelic pair of
genes whose expression is suppressed
by the other member

Sclerite — A chitinous plate of the exoskele-
ton of insects

Semen — Male sexual fluid or ejaculate

Spermatheca — Organ for the storage of
spermatozoa in the queen

Spermatocyte — Immature spermatozon

Spermatozoa — Mature male sex cells

Testioles — Semen ducts (in tests)

172

Vaginal chamber — Enlarged inner portion
of vagina

Vas deferens — The coiled tube leading
from testis to seminal vesicle

Ventral — Toward or on the lower side of
body

Vesicula seminalis — Seminal vesicle —
sperm storage organ of the drone

Vestibulum — Enlarged base of the everted
endophallus

Viscosity — measure for the flowing degree
of a liquid

Zygote — Afertilized egg
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