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Microsporidia comprise a phylum of single cell, intracellular parasites and represent the
earliest diverging branch in the fungal kingdom. The microsporidian parasite Nosema
ceranae primarily infects honey bee gut epithelial cells, leading to impaired memory,
suppressed host immune responses and colony collapse under certain circumstances.
As the genome of N. ceranae is challenging to assembly due to very high genetic
diversity and repetitive region, the genome was re-sequenced using long reads. We
present a robust 8.8 Mbp genome assembly of 2,280 protein coding genes, including a
high number of genes involved in transporting nutrients and energy, as well as drug
resistance when compared with sister species Nosema apis. We also describe the
loss of the critical protein Dicer in approximately half of the microsporidian species,
giving new insights into the availability of RNA interference pathway in this group. Our
results provided new insights into the pathogenesis of N. ceranae and a blueprint for
treatment strategies that target this parasite without harming honey bees. The unique
infectious apparatus polar filament and transportation pathway members can help to
identify treatments to control this parasite.
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INTRODUCTION

As the earliest branch from the fungal kingdom, microsporidia comprise a large and widespread
group of obligate intracellular animal parasites (Keeling and Fast, 2002; Williams, 2009; Capella-
Gutiérrez et al., 2012). In humans, microsporidia are opportunistic parasites that infect immuno-
compromised patients (Didier, 2005). Microsporidia also showed substantial damage to the
silkworm and fisheries industries and are a driving factor for honey bee colony losses which
seriously threaten the agricultural economy and global food security (Higes et al., 2008; Aizen
et al., 2009; Freeman and Sommerville, 2011; Stentiford et al., 2016; Santhoshkumar et al., 2017;
Meng et al., 2018). In response to their intracellular parasitic life cycle, microsporidia have
undergone massive reductions in gene content, including decayed glycolytic pathways, leading
to extremely compact eukaryotic genomes (Pelin et al., 2015, 2016; Ndikumana et al., 2017;
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Wiredu Boakye et al., 2017). Strikingly, mitochondrial genes
were lost completely, leaving only a mitochondrion-related
organelle called the mitosome (Burri et al., 2006). As a result,
energy and resources needed for the proliferation of the parasite
are acquired directly from the host, causing energetic stress
(Mayack and Naug, 2009; Martin-Hernandez et al., 2011).

Nosema ceranae is a microsporidian parasite which infects
honey bee mid-gut epithelial cells (Fries et al., 1996). As
with all microsporidian parasites, N. ceranae produce infectious
spores. The spore wall, which is comprised of an electron-dense
proteinaceous exospore and an electron-transparent endospore
protects the parasite from environmental stressors, allowing
spores to remain infective for long term (Li et al., 2003; Fayer,
2004). N. ceranae infection starts from the ingestion of spores
contaminated nectar and transmitted through oral-fecal and oral-
oral routes. The spores germinate in the gut lumen and extrude a
polar tube which ejects the sporoplasm into the host cytoplasm
(Klee et al., 2007). This leads to parasite proliferation in the
subsequent 4 days, resulting in a huge number of offspring spores.
The life cycle destroys the gut membrane matrix and epithelial
cell integrity (Higes et al., 2006, 2007). Infected honey bees
showed suppressed immune responses, impaired memory, and
energetic stress (Antunez et al., 2009; Mayack and Naug, 2009;
Higes et al., 2013; Gage et al., 2018).

This paper aims to improve the N. ceranae genome assembly
using long-read sequencing technology, reducing redundancies
and improving the integrity of the assembled genome. We also
more fully analyzed the transporters, spore wall, and polar
tube proteins, essential proteins that fuel proliferation and
determine the success of infections. These analyses improve our
understanding of parasite evolution but also provide targets to
treat an important bee disease.

MATERIALS AND METHODS

DNA Sequencing and Genome Assembly
N. ceranae spores were collected from the midgut tissues of
heavily infected honey bee colonies. As the genetic diversity of
N. ceranae is higher within a colony than among colonies, the
impacts of multi-colony spores on the quality of the assembled
genome was minor (Gómez-Moracho et al., 2014, 2015). The
spores were purified using a Percoll gradient procedure and
genomic DNA was extracted using the CTAB protocol (Chen Y.
et al., 2013). The species status of N. ceranae was confirmed by
species-specific PCR (Fries et al., 2013). A library was prepared
and sequenced following the Oxford Nanopore protocol using
MinION cell. Long reads were self-corrected and assembled using
Mecat (version 1.0) with default parameters (Xiao et al., 2017).
Redundant contigs were collapsed using redundans (version
0.13c) with default parameters (Pryszcz and Gabaldón, 2016).
The assembly was aligned against the NCBI bacteria database
and honey bee genome by BLASTN to remove contamination.
The long reads were re-aligned to the assembled genome to
determine structural variations (SVs) using the Ngmlr and
Sniffles pipline (Sedlazeck et al., 2018). The assembled genome
has been deposited in GenBank with assembly accession number

GCA_004919615.1. The raw reads were deposited to NCBI
BioProject PRJNA514060.

Gene Prediction and Functional
Annotation
Previously, we quantified N. ceranae gene expression profiles
at various proliferation stages with RNA-seq (Huang et al.,
2019). To improve the gene annotation, we re-mapped those
reads to the current N. ceranae genome assembly and retrieved
the aligned reads using Hisat2 with default parameters (Kim
et al., 2013). Both the assembled contigs (Supplementary
File 1) and RNA-seq reads were imported into GenSAS, a free
online gene features annotation pipeline (Humann et al., 2019).
Briefly, the genomes were first masked using RepeatMasker
and RepeatMolder (Smit et al., 2015a,b). Next, the genes were
predicted using GeneMarkES and Augustus (Lomsadze et al.,
2005; Stanke et al., 2008). After that, RNA-seq reads were
assembled to longer transcripts using Spades, and these reads
were used to polish the annotated gene features using PASA
(Haas et al., 2008; Bankevich et al., 2012). In order to infer
biological function, the predicted protein sequences were aligned
by BLASTN to the Pfam, Uniprot, and NCBI non-redundant
databases. The completeness of the assembly was gauged using
BUSCO (version 4) against the microsporidia_odb10 dataset
(Simao et al., 2015; Seppey et al., 2019).

Phylogenetic Analysis of the
Microsporidian Species
The protein sequences of other 19 microsporidian parasites
(Encephalitozoon romaleae, Encephalitozoon hellem,
Encephalitozoon intestinalis, Encephalitozoon cuniculi, Ordospora
colligata, Nosema apis, Nosema bombycis, Enterocytozoon
bieneusi, Enterospora canceri, Enterocytozoon hepatopenae,
Vittaforma corneae, Trachipleistophora hominis, Vavraia culicis,
Pseudoloma neurophilia, Edhazardia aedis, Anncaliia algerae,
and Nematocida parisii) with assembled genomes were retrieved
from NCBI and MicrosporidianDB1,2 (Katinka et al., 2001;
Corradi et al., 2007, 2009, 2010; Cuomo et al., 2012; Heinz
et al., 2012; Pombert et al., 2012, 2013, 2015; Campbell et al.,
2013; Chen Y. et al., 2013; Pan et al., 2013; Haag et al., 2014;
Desjardins et al., 2015; Ndikumana et al., 2017; Reinke et al.,
2017; Wiredu Boakye et al., 2017). These protein sequences were
all used to query the BUSCO gene set microsporidian_odb 10
(Simao et al., 2015; Seppey et al., 2019). The 48 shared BUSCO
groups among all 20 microsporidian species were aligned
using Muscle with default parameters (Edgar, 2004). Resulting
alignments were trimmed with trimAI (-w 3 -gt 0.95 -st 0.01)
and then concatenated for phylogenetic analyses with Mrbayes
(nchain = 4, aamodelpr = mixed, ngen = 1,000,000) (Ronquist
and Huelsenbeck, 2003). The tree was then viewed and edited
using FigTree3. The species M. daphniae was used to root the tree.

1https://www.ncbi.nlm.nih.gov/nuccore/AOMW00000000.2
2https://www.ncbi.nlm.nih.gov/nuccore/AEYK00000000.1
3http://tree.bio.ed.ac.uk/software/figtree/
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Synteny and Phylogenic Analysis of the
Gene Dicer
A paired synteny analysis among N. ceranae, N. apis, and
N. bombycis was performed and viewed using SyMAP (V5.0.5)
(Soderlund et al., 2011). In order to further analyze the
selection of the gene Dicer, protein sequences were retrieved
from 11 microsporidian species that have maintained the gene
encoding Dicer. These Dicer orthologs have been described
previously (Ndikumana et al., 2017). The sequences were aligned
with Muscle, and a phylogenic tree was constructed using
Mrbayes (nchain = 4, aamodelpr = mixed, ngen = 1,000,000)
(Ronquist and Huelsenbeck, 2003; Edgar, 2004). Additionally,
as the intergenic regions were fragmented, the maximal
length of nucleotides up-(1 Kbp) and down-(2 Kbp) stream
of the gene for Dicer were retrieved and aligned with
Muscle (Edgar, 2004). These aligned sequences were then
concatenated for the phylogenetic calculation with Mrbayes
(nchain = 4, rates = invgamma, ngen = 1,000,000) (Ronquist and
Huelsenbeck, 2003). The species M. daphniae, A. algerae, and
N. apis were excluded, as the gene for Dicer was located at either
the start or end of contigs or at a gap, where the nucleotides up-
or down-stream of the gene for Dicer were not long enough to
perform phylogenic analysis.

Synteny Analysis of Polar Tube Proteins
(PTP) and the Identification of Spore Wall
Proteins (SWP)
In order to further characterize the PTP genes and SWP genes,
protein and CDS sequences encoded SWP were downloaded
from NCBI and used as a library. The genome sequences of
N. ceranae were used to query this library. Through blast with
an E-value cutoff of ≤1e−5, the best aligned sequence was used
for further analysis. To identify PTPs in N. ceranae, about 10 kb
sequences of upstream and downstream of PTPs in E. cuniculi
and N. bombycis were obtained, then candidate sequences were
retrieved by BLAST (E-value ≤ 1e−10). Synteny blocks were
identified manually from BLAST coordinates.

Identification and Phylogenetic Analyses
of Iron-Sulfur (Fe-S) Cluster Assembly
Machinery
The components of the Fe-S cluster assembly machinery have
been preliminarily identified for the microsporidians E. cuniculi
and T. hominis (Goldberg et al., 2008). To identify the Fe-S cluster
assembly proteins for N. ceranae, the amino acid sequences of
E. cuniculi and T. hominis Fe-S cluster assembly genes Isu1, Nfs1,
and Hsp70 gene were aligned to N. ceranae protein set using
BLASTP. Putative Fe-S cluster assembly genes for N. ceranae
were designated by E-value ≤ 1e−20 and query coverage ≥ 95%,
and only one record for each gene was obtained. Sequences
were aligned using Muscle (Edgar, 2004). The phylogenetic trees
were built up using the PhyML program with the WAG model
under maximum likelihood (Anisimova and Gascuel, 2006). The
TreeDyn program was applied to visualize the trees (Chevenet
et al., 2006). All the above analyses from the sequence alignment

to tree reconstruction were carried out on the phylogeny.fr
platform (Dereeper et al., 2008). Outputs in Newick format from
this platform were downloaded and further used as input in the
iTOL program to generate an unrooted, circular phylogenetic tree
(Letunic and Bork, 2007).

Identification and Phylogenetic Analyses
of the ATP Binding Cassettes (ABC)
Transporter and ATP/ADP Carriers
The protein sequences of 22 fungal species were downloaded
from NCBI, including 20 microsporidian species (E. romaleae,
E. hellem, E. intestinalis, E. cuniculi, O. colligata, N. apis,
N. bombycis, E. bieneusi, E. canceri, Enterocytozoon hepatopenae,
V. corneae, T. hominis, V. culicis, P. neurophilia, E. aedis, A.
algerae, Nematocida spERTm5, Nematocida sp1, N. parisii, M.
daphniae) and two yeast species (Schizosaccharomyces pombe
and Saccharomyces cerevisiae). The sequences of fungal ABC
transporters were obtained from previous studies, which were
used as seed sequences to query the downloaded protein
sequence sets using BLAST with cutoff P < 0.05 (Paumi et al.,
2009; Kovalchuk and Driessen, 2010). Sequences were examined
manually to remove apparently incomplete sequences against
query seeds. All candidate ABC amino acids were then aligned
with MAFFT (Katoh et al., 2005). Amino acid substitution
models for the ABC family were selected based on Prottest3
(Darriba et al., 2011). The phylogenetic tree was generated using
FastTree based on the Jones-Taylor-Thornton (JTT) model with
1,000 bootstraps (Price et al., 2009). The final tree was viewed
with MEGA7 (Kumar et al., 2016).

Additionally, protein sequences of ATP/ADP carriers for
S. cerevisiae, E. cuniculi and E. bieneusi were downloaded from
NCBI and then used to query against the microsporidian protein
sequences using BLAST with P < 0.05 as cutoff. Sequences
were examined manually to remove apparently incomplete
sequences against query seeds. All candidate protein sequences
were then aligned with MAFFT (Katoh et al., 2005). Amino acid
substitution models for ATP/ADP carriers were selected based on
Prottest3 (Darriba et al., 2011). A phylogenetic tree was generated
using PhyML based on the Jones-Taylor-Thornton (JTT) model
with 1,000 bootstraps (Guindon and Gascuel, 2003). The final tree
was viewed with MEGA7 (Kumar et al., 2016).

RESULTS AND DISCUSSION

Genome Assembly Statistics, Gene
Features and Completeness
The genomes of microsporidian parasites are generally compact
due to their intracellular parasitic life history, ranging from 2–
15 Mbp (Ndikumana et al., 2017). However, an exceptionally
large genome of 51 Mpb has also been observed (Desjardins
et al., 2015). Within the microsporidian parasites, the species
maintained RNAi genes also showed a number of transposable
elements, which might contribute to the observed larger genome
sizes (Ndikumana et al., 2017). The genome of N. ceranae
is notoriously difficult to assemble due to an extremely high
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level of within-colony genetic diversity (Gómez-Moracho et al.,
2014) and the inability to produce pure cultures outside of
honey bee hosts. In our study, 2,186,226 reads were generated,
resulting in an 8.8 Mbp assembled genome (1,141× genome
coverage). The genome was composed of 110 contigs, a
substantial improvement over the previous assembly. In total,
2,280 genes were predicted with an average length of 1,057
nucleotides per gene, all supported by transcriptomic reads
(Table 1 and Supplementary File 1). Alternative splicing has
not been found, but 3′ UTR were identified, which enhanced
miRNA-targeted gene prediction. By aligning the long reads back
to the assembly, 97.2% of reads can be aligned. The majority
of structural variations (SVs) were inversion duplications, and
the number of SVs were positively correlated with contig length
(Figure 1). The impacts of SVs on any phenotypic effects in
microsporidia remain unclear, even though SVs contribute to
genomic diversity (Borneman et al., 2011). In the budding
yeast, SVs were suggested to be involved in tolerance toward
stressors (Zhang et al., 2016). Also, SVs in fission yeasts showed
strong impacts on quantitative traits and reproductive isolation
(Jeffares et al., 2017). In our study, 1,785 genes were found
within SVs. By aligning the protein sequences to the KEGG
database, the distribution of genes among the six functional
categories was not significantly different across the genome
(Pearson’s Chi-squared test, P > 0.05). By aligning the RNA-
seq reads back to the assembly, all the predicted protein-
coding genes were expressed, suggesting these protein-coding
genes were functional. Out of 600 conserved BUSCO groups,
541 complete, 6 fragmented and 53 missing BUSCOs were
identified, indicating the assembly is nearly complete (Figure 2).
As the BUSCO gene sets for microsporidia were primarily based
on Encephalitozoon species, genes could be lost during the
divergence, such as RNAi genes, which might partly explain the
missing BUSCO genes in microsporidian species. Overall, the
genome-based phylogenetic tree is consistent with previous ones
(Ndikumana et al., 2017).

TABLE 1 | Assembly statistics of three versions of N. ceranae genome.

Assembly
statistics

GCA_004919615.1 GCA_000988165.1 GCA_000182985.1

Sequencing
technology

Oxford Nanopore Illumina HiSeq 454

Genome
coverage

1,141 120 25

Assembly size
(Mbp)

8.8 5.6 7.8

Number of
contigs

110 536 5,465

N50 (Kbp) 177.3 42.5 2.9

Number of
protein-coding
genes

2,280 3,246 2,060

Percentage of
genes supported
by RNA-seq

100% 93% 95%

Number of
aligned BUSCO

541 583 508

Synteny and Phylogenetic Analysis of
Dicer
RNAi is a mechanism to regulate gene expression at the post-
transcriptional level, which is crucial for the development and
defenses of organisms (Zhao and Srivastava, 2007; Obbard et al.,
2009). Based on the assembled genomes, a few microsporidian
species have lost RNAi genes (Ndikumana et al., 2017). However,
the evolutionary forces driving the loss of RNAi genes in
microsporidian species remain unclear. Out of 20 selected
microsporidian species, a subset of 11 species has maintained
RNAi genes Dicer and Argonaute, including M. daphniae,
S. lophii, P. neurophilia, V. culicis, T. hominis, A. algerae, E. aedis,
V. corneae, N. bombycis, N. apis, and N. ceranae. We did
not find evidence suggesting that the loss of RNAi genes was
associated with host specificity, either between insect and non-
insect, or between vertebrate and invertebrate (Huang, 2018).
As the flanking sequences and Dicer were selected as a unit,
the topology of the phylogenic tree suggests that the loss of
RNAi occurred late in the divergence of the microsporidian
species twice without reversal. The events of RNAi maintenance
significantly deviated from random (Fisher’s Exact test, P < 0.05;
Figure 2). As N. ceranae, N. apis and N. bombycis were the most
closely related sister species, and all three species maintained
the gene Dicer, a synteny block with the gene Dicer is expected
among the three species. By pair-wise analyses, 28 synteny
blocks were identified between N. bombycis and N. ceranae,
including a synteny block containing the gene Dicer (Figure 3).
Additionally, 34 synteny blocks were identified between N. apis
and N. ceranae. However, a synteny block containing the gene
Dicer was not found between these two species, which might be
due to a genome rearrangement. Alternatively, the orthologous
anchor genes might have been fragmented during the assembly
processes of other species (Liu et al., 2018). Therefore, two
additional phylogenic analyses were further performed using
protein sequences of the gene Dicer, as well as the up and
downstream nucleotides of the gene Dicer. The topology of the
phylogenetic tree for Dicer was consistent with the proposed
divergence of microsporidian species (Figure 4). It is then
reasonable to expect signals of genetic hitchhiking around the
gene Dicer (Barton, 2000). Therefore, 1 Kbp up-stream and 2
Kbp down-stream the gene Dicer were extracted to construct a
phylogenic tree. The topologies of the trees of both datasets were
highly congruent, suggesting the upstream and downstream of
the gene Dicer were under selection in parallel with the gene Dicer
without insertion or recombination, at least within the studied
clades due to hitchhiking.

Phylogenetic Analysis of Iron-Sulfur
(Fe-S) Cluster Assembly Machinery
Microsporidia are highly obligate intracellular parasites of
animals with extremely compact genomes and decreased cellular
and biochemical reactions (Katinka et al., 2001; Keeling and
Fast, 2002; Corradi et al., 2010). The microsporidian phylum
lacks typical mitochondria but contains a mitosome, a tiny
mitochondrial remnant (Williams et al., 2002). Although
mitosomes have lost canonical mitochondrial functions like
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FIGURE 1 | Structural variation of the N. ceranae genome. (A) In total, 8209 SV events were identified. The inversion duplication dominated the SV events, followed
by indels, inversion and duplication. (B) The number of SV events is positively correlated with the contig length. (C) The number of SVs within genes.

FIGURE 2 | Phylogenetic tree and estimated completeness of the genome of 20 microsporidian species. The phylogenic tree was constructed based on 48 BUSCO
genes shared among the microsporidian species and M. daphniae is used to root the tree. All the branches were 100% supported. Overall, 90.2% of microsporidian
BUSCOs (V10) were identified from N. ceranae. The studied species N. ceranae has been highlighted. The RNAi genes have been lost twice without reversal, which
have been highlighted.

aerobic respiration and biosynthesis, their ability to generate
Fe-S proteins essential for the maturation of proteins of
diverse functions is maintained (Goldberg et al., 2008). Several
components are required for the Fe-S cluster assembly machinery
of mitosomes. First, the scaffold proteins Isu1 and Isu2 are
involved in the de novo biosynthesis of a transiently bound Fe-S
cluster. In this step, iron and sulfur are donated by frataxin (Yfh1)
and the cysteine desulphurase complex Nfs1–Isd11, respectively.
The electrons are delivered by ferredoxin (Yah1). Then, the Fe–
S cluster pass from Isu1 and Isu2 to target apoproteins with the
support from a Hsp70 (Ssq1) protein, co-chaperone Jac1, and the
monothiol glutaredoxin Grx5.

Isu1, Nfs1, and Hsp70 are key components of Fe-S cluster
assembly machinery. Orthologs for these proteins were retrieved

to build the phylogeny trees crossing eukaryotic and prokaryotic
organisms. By comparing the amino sequences, one significant
hit was identified from the N. ceranae genome for Isu1
(Nn.00g008470, Figure 5), Nfs1 (Nn.00g019510, Figure 6), and
Hsp70 (Nn.00g001540, Figure 7), respectively. The homologs
of all three genes are inter-kingdom conserved, suggesting
the conservation and importance of the Fe-S cluster assembly
machinery. Generally, the genes from microsporidia (including
N. ceranae) were relatively close and clustered. However,
significant intra-microsporidian divergence was observed for
Isu1 and Nfs1. Interestingly, all three phylogenetic trees suggest
that the microsporidian sequences are branched relatively early
from other species, indicating microsporidia may contain specific
features of the Fe-S cluster assembly, supported by the Siddal and

Frontiers in Microbiology | www.frontiersin.org 5 June 2021 | Volume 12 | Article 645353

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-645353 May 27, 2021 Time: 18:37 # 6

Huang et al. N. ceranae Genome Assembly

FIGURE 3 | Synteny among N. apis, N. ceranae and N. bombycis. At the genome level, 28 synteny blocks were identified between N. bombycis and N. ceranae.
Additionally, 34 synteny blocks were identified between N. apis and N. ceranae. Surprisingly, a synteny block with the gene Dicer is not shared among the three
species. The gene Dicer was predicted in N. ceranae contig (SMUP01000048). The paired synteny block between N. ceranae and N. apis, as well as between
N. ceranae and N. bombycis were further shown in this contig. The corresponding region are shown on the right of the contig and the region with red lines indicates
a synteny block. A synteny block with the gene Dicer was identified between N. ceranae and N. bombycis.
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FIGURE 4 | Phylogenetic trees of the gene Dicer and surrounding regions. (A) The tree was constructed based on the protein sequences of the gene Dicer.
M. daphniae was used to root the tree. (B) The tree was constructed based on the nucleotides up and down stream of the gene Dicer. N. bombycis was selected to
root the tree. The congruence of the two trees suggests a hitchhiking effect of Dicer during microsporidian divergence.

FIGURE 5 | Maximum likelihood phylogenetic tree of Isu1 proteins. Branches are labeled as GenBank accession numbers followed by species names. Branches
with bootstrap values (1,000 replicates) less than 0.5 were discarded. The genetic distance is drawn to scale. The current Nosema ceranae record is highlighted with
red color. The definitions of the species clusters are adopted from the NCBI Taxonomy database.

Frontiers in Microbiology | www.frontiersin.org 7 June 2021 | Volume 12 | Article 645353

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-645353 May 27, 2021 Time: 18:37 # 8

Huang et al. N. ceranae Genome Assembly

FIGURE 6 | Maximum likelihood phylogenetic tree of Nfs1 proteins. Branches are labeled as GenBank accession numbers followed by species names. Branches
with bootstrap values (1,000 replicates) less than 0.5 were discarded. The genetic distance is drawn to scale. The current Nosema ceranae record is highlighted with
red color. The definitions of the species clusters are adopted from NCBI Taxonomy database.

Whiting method (Supplementary Figure 1). A follow-up study
will be to investigate the biosynthetic function of Fe-S proteins in
the microsporidian mitosomes.

Analysis of ATP-Binding Cassette (ABC)
Transporter
ABC transporters constitute one of the largest superfamilies
found in all living organisms, with the number of known
members exceeding more than 10,000 species (Dassa and
Bouige, 2001). ABC transporters contain a pair of nucleotide-
binding domains (NBDs) that hydrolyze ATP and facilitate
conformational alterations in the associated transmembrane
domains (TMDs), thus permitting substrates to cross the
membrane lipid bilayer and either be exported out of or imported
into the cytoplasm (Locher, 2016). ABC transporter proteins are
engaged in the ATP-dependent transport of extensive substrates

across biological membranes, as well as receptors, ion channels,
mRNA translation, and ribosome biogenesis (Kovalchuk and
Driessen, 2010). Importantly, ABC transporters have been found
to contribute to multidrug resistance in microbial pathogens
and tumor cells (Piddock, 2006; Lubelski et al., 2007; Wu et al.,
2019). According to the Human Genome Organization (HUGO)
approved scheme, all eukaryotic ABC transporter proteins are
categorized into eight major subfamilies (A to H) (Dean et al.,
2001). In the fungal kingdom, the ABC transporter proteins have
been well described in the budding yeast S. cerevisiae and the
fission yeast S. pombe (Iwaki et al., 2006). However, knowledge
of microsporidian ABC transporters remains limited. With the
rapid development of genome sequencing projects in the past
two decades, a diversity of ABC transporter proteins in genomes
of microsporidian species has been uncovered, which allows
for the comparative survey of ABC transporters within this
group of organisms.
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FIGURE 7 | Maximum likelihood phylogenetic tree of Hsp70 proteins. Branches are labeled as GenBank accession numbers followed by species names. Branches
with bootstrap values (1,000 replicates) less than 0.5 were discarded. The genetic distance is drawn to scale. The current Nosema ceranae record is highlighted with
red color. The definitions of the species clusters are adopted from NCBI Taxonomy database.

In the current research, five of eight subfamilies (ABC-B,
ABC-C, ABC-E, ABC-F, and ABC-G) were present in genomes
of 21 microsporidian species, and among these ABC subfamilies,
members of ABC-G proteins were the most abundant, followed
by ABC-B subfamily (Table 2). ABC-A, ABC-D, ABC-H
subfamilies seem to be lost in most or all microsporidia. ABC-
C only presents in the basal microsporidian M. daphniae. ABC-B
proteins represent a large category of ABC transporters, which
are widely distributed among eukaryotes, including fungi. Their
diverse functions are associated with the export of mitochondrial
peptides, biogenesis of iron-sulfur (Fe-S) cluster proteins,
multidrug resistance, and antigen processing (Kovalchuk and
Driessen, 2010). Genomic investigations demonstrate that
reduction in metabolic capabilities is the dominating feature of
microsporidian genome evolution, which has been supported by
expanding transporter gene families to compensate for pathway

loss (Heinz et al., 2012; Nakjang et al., 2013; Freibert et al.,
2017). In our study, ABC-B members were identified in all
microsporidian genomes though the number varies among
different species, suggestive of the importance of ABC-B family
in microsporidia (Table 2 and Figure 8). The number of ABC-B
members was conserved in Encephalitozoon species, suggesting
an essential function in this group of microsporidia. However,
the number of ABC-B has diverged within Nosema family,
where Nosema ceranae maintained the highest number of ABC-
B paralogs, indicative of a lineage-specific duplication of this
subfamily, which can also be seen in the evolutionary tree
(Figure 8). Alternatively, the lower number of ABC-B might
be due to incompletely assembled genomes in other Nosema
species. Considering that N. ceranae has become a globally
predominant microsporidian species in honey bees, it’s of great
interest to perform additional studies to explore the relationship
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TABLE 2 | Numbers of ABC transporter genes in 22 microsporidian species and
two yeast species, in each of five subfamilies.

Species Subfamily Total

B C E F G

Microsporida Encephalitozoon
romaleae

5 0 1 1 6 13

Encephalitozoon hellem 6 0 1 1 6 14

Encephalitozoon
intestinalis

6 0 1 1 6 14

Encephalitozoon
cuniculi

6 0 1 1 5 13

Ordospora colligata 5 0 1 1 5 12

Nosema ceranae 7 0 1 1 4 13

Nosema apis 6 0 1 1 1 9

Nosema bombycis 3 0 1 1 5 10

Enterocytozoon
bieneusi

7 0 11 0 1 19

Enterospora canceri 4 0 1 0 1 6

Enterocytozoon
hepatopenae

5 0 1 0 4 10

Vittaforma corneae 12 0 1 1 2 16

Trachipleistophora
hominis

3 0 1 1 7 12

Vavraia culicis 3 0 1 1 7 12

Pseudoloma
neurophilia

3 0 1 1 7 12

Edhazardia aedis 3 0 1 1 12 17

Anncaliia algerae 3 0 1 1 9 14

Nematocida spERTm5 1 0 1 0 5 7

Nematocida sp1 1 0 1 0 6 8

Nematocida parisii 1 0 1 0 4 6

Mitosporidium
daphniae

3 2 1 1 2 9

Yeast Schizosaccharomyces
pombe

5 4 1 5 3 18

Saccharomyces
cerevisiae

4 6 1 5 11 29

The bold means the assembled species in this study.

between the high number of ABC-B and the high virulence of
N. ceranae.

ABC-G transporters in fungal species were often reported to
be engaged in drug resistance and lipid translocation (Smriti
et al., 2002; Coleman and Mylonakis, 2009). The number of
ABC-G in the investigated microsporidian species was diverse,
from only a single copy in N. apis, E. bieneusi, E. canceri, and
V. culicis to 12 copies in E. aedis (Table 2). There might be
some host- or environment-driven pressures to explain the huge
birth and death rates of genes in this essential protein family,
suggesting that this subfamily has undergone lineage-specific
divergence during microsporidian evolution. N. ceranae (four
ABC-G) showed higher copy number of ABC-G than that of its
most closely related species N. apis (one ABC-G). However, the
other three ABC-G orthologs were clustered into a single group
(Figure 8), which indicates a recent gene duplication in ABC-G
of N. ceranae. In another closely related species, N. bombycis,
ABC-G was constantly expressed over the entire proliferation

stages and was a key player in substrate transportation from ions
to proteins (He et al., 2019). It is then interesting to decipher the
detailed function of ABC-G during N. ceranae proliferation.

Analysis of ATP/ADP Carriers
As the result of an intracellular lifestyle, the microsporidian
parasites have lost canonical mitochondria and oxidative
phosphorylation pathway; hence glycolysis is the mean to
produce ATP (Timofeev et al., 2020). To satisfy their energy
demands, microsporidia acquired the capability to import ATP
directly from the host cell cytoplasm during proliferation
(Tsaousis et al., 2008). Indeed, microsporidia have frequently
been detected to be surrounded by host mitochondria (Han et al.,
2019). ATP/ADP carriers, which were gained via HGT from
intracellular bacteria, play a pivotal part in the transportation
of ATP from infected cells to E. cuniculi (Tsaousis et al., 2008;
Heinz et al., 2014). Additional efforts are required to conclude
whether this is a common strategy during the evolution of
microsporidian species.

Here, a phylogenetic tree of 21 microsporidian species and
two yeast species S. cerevisiae and S. pombe was built based on
the ATP/ADP carriers (Figure 9). There were three ATP/ADP
carriers in P. neurophilia and E. aedis, similar to the number
of ATP/ADP carriers identified in S. cerevisiae and S. pombe.
Two members of the ATP/ADP carrier family were identified in
A. algerae, T. hominis, Nematocida sp1, Nematocida spERTm5,
and N. parisii. Only one ATP/ADP carrier was found in
M. daphnia, which has a microsporidia-like morphology and
is regarded as a basal microsporidia species (Bass et al., 2018).
The different number of ATP/ADP carriers among various
microsporidian parasites demonstrated that the selection of
ATP/ADP carrier genes occurs during the lineage divergence.
Species of the genus Encephalitozoon are ubiquitous vertebrate
pathogens except for E. romaleae, which has been isolated from
a grasshopper (Corradi, 2015). These species are well-known for
their miniature genomes (ranging from 2.3 to 2.9 Mb) with the
smallest coding capacity (Pombert et al., 2012). We observed that
the numbers of ATP/ADP carrier members in Encephalitozoon
species are highly conserved, and E. cuniculi, E. bieneusi,
E. hepatopenaei, E. intestinalis, E. hellem, and E. romaleae all
have four ATP/ADP carrier proteins. Similar to Encephalitozoon
species, N. ceranae has four ATP/ADP carriers, which was higher
than N. apis (two ATP/ADP carriers) and N. bombycis (one
ATP/ADP carrier). N. ceranae Nn.00g020520 and Nn.00g004970
are, respectively, homologous to N. apis EQB60298.1 and
EQB60147.1, while N. ceranae Nn.00g004860 is homologous to
N. bombycis EOB13854.1 (Figure 9). Additionally, N. ceranae
Nn.00g006340 has no homolog in N. apis or N. bombycis.
This is suggestive of a recent lineage-specific gene expansion of
ATP/ADP carrier family inN. ceranae.N. ceranae andA.mellifera
have evolved together over just a short period, and arguably this
imbalance explains why N. ceranae exerts more energetic stress
on the bee host (Martin-Hernandez et al., 2011).

Due to a lack of well-established tools for genetic
manipulation, functional study on ATP/ADP carriers in
microsporidian is extremely limited, especially in Nosema
species. Given the severe influence of N. ceranae on the
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FIGURE 8 | Maximum likelihood phylogenetic tree of ABC transporter proteins of 23 fungal genomes. The tree was based on a total of 293 ABC transporter protein
sequences. The unrooted tree was calculated with FASTTREE based on JTT mode with 1,000 replications. The color code associated with each protein indicated
the subfamily, with brown for subfamily B, purple for subfamily C, blue for subfamily E, red for subfamily F and green for subfamily G. Two ABC proteins from
subfamily D in S. cerevisiae were labeled with black line.

worldwide beekeeping industry, it’s necessary and significant
to carry out experimental work on the function of identified
members of ATP/ADP carrier family in N. ceranae adopting
molecular approach such as RNAi, which has been proved to be
efficient in knockdown of several N. ceranae genes (Paldi et al.,
2010; Li et al., 2016; Rodriguez-Garcia et al., 2018; Huang et al.,
2019). We previously used purified spores of N. bombycis to
infect Bombyx mori BmN cells, followed by transfection with a
non-transposon vector pIZT/V5-His vector and the exogenous
gfp gene was successfully inserted into the N. bombycis genome
(Guo et al., 2016). Additional studies reported the successful
establishment of the gypsy moth (Porthetria dispar) IPL-LD-65Y
cell-based system of N. ceranae infection (Gisder et al., 2011;
Gisder and Genersch, 2015), which provides an excellent

opportunity to conduct functional exploration of ATP/ADP
carrier genes of N. ceranae.

Synteny Analysis of the Genes Coding
Spore Wall Proteins (SWP) and Polar
Tube Proteins (PTP)
Microsporidia infects host cells by employing a unique, highly
specialized invasion device including the spore wall (SW) and
polar tube. After germination, the polar tube protein PTP1
can interact with lectin receptors on the host cell surface (Xu
et al., 2003, 2004). PTP2 with a basic lysine-rich core was
clustered closely with PTP1 on a contig. PTP3 was up-regulated
during sporogony at the transcriptional level (Peuvel et al., 2002).
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FIGURE 9 | Maximum-likelihood phylogenetic tree generated based on ATP/ADP carrier proteins in 23 fungal genomes. Based on the total aligned 68 ATP/ADP
carrier proteins, the tree, rooted with ATP/ADP carrier in S. cerevisiae and S. pombe, was calculated with PhyML based on JTT mode with 1,000 replications.
Bootstrap values are indicated at the base of each clade.

Polar tube protein 4 (PTP4) has been demonstrated to have
a specific epitope on the tip of the PT, and this epitope was
shown to interact with the host cell transferrin receptor (TfR1)
(Han et al., 2017). The five known genes encoding the polar
tube protein were all present in the current genome assembly,
which include PTP1, PTP2, PTP3, PTP4, PTP5 genes. After
determining the homologous gene loci in the genome, one
syntenic block harboring the PTP1 and PTP2 was identified
between N. bombycis, N. ceranae, E. cuniculi and E. intestinalis
(Figure 10). Remarkably, the PTP1 and PTP2 were arrayed
conversely both in N. ceranae and N. bombycis compared
with E. cuniculi and E. intestinalis (Supplementary Figure 2).
Similarly, another syntenic block, including the PTP4 and PTP5
genes, was identified (Figure 10). According to the composition
of the spore wall, there are multiple SWPs in both the exospore
and endospore (Han et al., 2020). In the current assembly, seven
genes encoding the spore wall protein were identified based on

homologous searches with BLASTP (Table 3). Protein domain
prediction showed that NcSWP12 contains BAR/IMD domain
which served as sensors of membrane curvature (Quinones et al.,
2010). In N. bombycis, NbSHWP12 with BAR/IMD domain is
localized to the spore wall and can adhere to the deproteinized
chitin coats (Chen J. et al., 2013). The homologous gene to
NcHSWP7, NbSWP7, is localized in the exospore, endospore and
polar tube of the mature N. bombycis spores where it mediates
adherence to host cells (Yang et al., 2015). NcHSWP1, which is
the ortholog of EnP1, was found to contain the heparin-binding
motif (HBM), which mediates interactions between spores and
glycosaminoglycan from the surface of host cells (Southern
et al., 2007). The low number of conserved spore wall genes
might be due to high divergence of these components among
microsporidian species.

N. ceranae destroys the gut integrity of honey bees, leading
to impaired flying and memory abilities, which can lead to the
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FIGURE 10 | The conservation of gene order among N. ceranae and three other related microsporidian species. (A) The distribution of PTP1 and PTP2 genes in the
synteny block. (B) The distribution of PTP4 and PTP5 genes in the synteny block. The colored oblong represents genes with functional annotations.

TABLE 3 | The identified spore wall proteins and Polar tube proteins of Nosema ceranae.

Protein Subcellular locationa Function domain Mw (kDa) Amino
acids (aa)

pI GenBank ID

HSWP1 Endospore mobidb-lite HBM, PF14239, RRXRR
Domain of unknown function (DUF4770)

48.42 426 8.49 G9061_00g010360

HSWP2 Pentapeptide repeats 30.97 265 9.3 G9061_00g004470

HSWP3 Signal-pep 41 341 8.5 G9061_00g006590

HSWP4 Transmembrane 52.8 475 6.84 G9061_00g007610

HSWP7 Exospore, endospore and polar tube SCOP domain d1ktba1 31.8 281 4.56 G9061_00g011170

HSWP9 Exospore, endospore and polar tube Transmembrane helix region (TMHMM) 44.37 379 9.74 G9061_00g017340

HSWP12 Exospore and endospore BAR/IMD domain 26.7 228 8.17 G9061_00g008430

spore wall protein
precursor

Signal-pep 25.79 222 5.14 G9061_00g009010

NcPTP1 Methylene-tetrahydrofolate reductase C
terminal

46.87094 456 4.92 G9061_00g021140

NcPTP2 30.44299 275 9.51 G9061_00g021150

NcPTP3 157.55451 1,414 6.46

NcPTP4 24.02931 208 5.86 G9061_00g019220

NcPTP5 31.78817 268 9.05 G9061_00g019230

loss of colonies. We anticipate that the updated genome resource
and comparative analyses provided here lead to novel methods to
control this parasite without harming honey bees. The provided
genome also reveals numerous evolutionary features compared
with other microsporidian parasites, which may help to clarify
the evolution of virulence and co-evolution with hosts.
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