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Managed populations of the European honey bee (Apis mellifera) support the production
of a global food supply. This important role in modern agriculture has rendered honey
bees vulnerable to the noxious effects of anthropogenic stressors such as pesticides.
Although the deleterious outcomes of lethal pesticide exposure on honey bee health
and performance are apparent, the ominous role of sublethal pesticide exposure is
an emerging concern as well. Here, we use a data harvesting approach to better
understand the toxicological effects of pesticide exposure across the honey bee life
cycle. Through compiling adult- and larval-specific median lethal dose (LD50) values from
93 published data sources, LD50 estimates for insecticides, herbicides, acaricides, and
fungicides are highly variable across studies, especially for herbicides and fungicides,
which are underrepresented in the meta-data set. Alongside major discrepancies in
these reported values, further examination of the compiled data suggested that LD50

may not be an ideal metric for honey bee risk assessment. We also discuss how
sublethal effects of pesticide exposure, which are not typically measured in LD50 studies,
can diminish honey bee reproduction, immunity, cognition, and overall physiological
functioning, leading to suboptimal honey bee performance and population reduction.
In consideration of actionable solutions to mitigate the effects of sublethal pesticide
exposure, we have identified the potential for probiotic supplementation as a promising
strategy that can be easily incorporated alongside current agricultural infrastructure and
apicultural management practices. Probiotic supplementation is regularly employed in
apiculture but the potential for evidence-based targeted approaches has not yet been
fully explored within a formal toxicological context. We discuss the benefits, practical
considerations, and limitations for the use and delivery of probiotics to hives. Ultimately,
by subverting the sublethal effects of pesticides we can help improve the long-term
survival of these critical pollinators.

Keywords: honey bee, pesticide, toxicology, immune, development, cognition, probiotic, LD50 (median
lethal dose)
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INTRODUCTION

Popular interest in the biology of the common European honey
bee (Apis mellifera) has surged in recent years due to the stark
population decline of this important pollinator (Goulson et al.,
2015). Managed colonies of Apis mellifera, strictly speaking, are
an invasive insect species to the Americas (Whitfield et al., 2006),
but contribute to the production of roughly a third (∼35%) of
the global food supply (Blacquière et al., 2012). In Canada, this
single insect species is tied to a ∼$2.5 billion (CAD) industry of
pollination services, whereby colonies are strategically situated
in orchards and fields to promote farmer yields via the cross-
fertilization of flowering crops (Mukezangango and Page, 2017).
In the United States, the value of bee-mediated pollination is even
larger (Calderone, 2012). Despite the value of honey bees to the
agri-food industry, we have yet to fully understand how their
populations cope with natural- and agriculture-induced stress,
or to what extent this stress explains recent increases in reported
mortalities (Goulson et al., 2015).

Though no single factor can provide a universal explanation
for the apparent decline of honey bee populations, one overriding
theme to emerge from the front lines of a global research
effort is that more than one factor combines to overwhelm
bee health. Among them, pesticide exposure (Sanchez-Bayo and
Goka, 2014; Zhu et al., 2014), pathogens (Evans and Schwarz,
2011), and habitat loss (Clermont et al., 2015; Youngsteadt
et al., 2015) are prime factors that disproportionately contribute
to the decline. In particular, sublethal pesticide exposure
has been a popular focus of political discussion, which has
highlighted the potential conflict between parties that rely on
the production and use of commercial pesticides and those
who advocate for their regulation and alternative means of crop
pest control. Moreover, the risk of pesticides to honey bees
is especially alarming due to their long half-lives (Bonmatin
et al., 2015) and presence in food (Lu et al., 2018) and honey
(Mitchell et al., 2017).

Herbivorous pest insects are the intended target of systemic
application of agriculture insecticides. Nonetheless, honey bees
are insects just the same and thus cannot help but to be
vulnerable through incidental exposure. These pesticides are
applied to crops in two main ways: spraying and seed coating,
both of which have effects on honey bee exposure. Spraying is
typically accomplished through aerial application, but some use
vehicle-based sprayers or manual units. These are effective as a
means of pest control but can inadvertently affect honey bees
through direct topical contact or through secondary exposure
via bee consumption of contaminated pollen, nectar, or water
(Fairbrother et al., 2014; Poquet et al., 2014; Park et al.,
2015; Zhu et al., 2015). Furthermore, spray-based application
allows pesticides to disseminate into the broader environment
and contaminate surrounding habitats, including orchards and
fields that are not intentionally sprayed (McArt et al., 2017;
Simon-Delso et al., 2017). As an alternative to sprays, seed
coatings can avoid some off-site targets by more carefully
controlling pesticide delivery to its intended crop. However,
seed coatings can also cause collateral damage because some
pesticides remain active in plant tissue, including nectar and

pollen (Krupke et al., 2012; Goulson, 2013; Alburaki et al., 2015;
Samson-Robert et al., 2017).

In addition to inadvertent exposure from modern agricultural
practices, honey bees can be deliberately exposed to miticides
and fungicides by beekeepers through basic hive management
practices that aim to combat pests and pathogens. Though best
practice for beekeepers is intended to augment the bee’s own
defences, their application may sometimes harm the pollinators.

In total, managed honey bee colonies can be exposed to
a diverse set of pesticides, which can only be determined by
detailed toxicological sampling (Tsvetkov et al., 2017). These
chemicals affect bees through any combination of ingestion,
contact exposure, or ambient intake through respiratory
openings (spiracles). Contact exposure and ingestion as routes
of contamination are well studied and reveal pesticide-specific
effects on honey bee health (Villa et al., 2000; Stoner and Eitzer,
2013; Sanchez-Bayo and Goka, 2014; McArt et al., 2017). Honey
bee respiration, which occurs in respiratory spiracles that are
found along the thorax and abdomen of adults, is thought to
only be a minor route of pesticide uptake (Geoghegan et al.,
2013). Ultimately, these modes of exposure are responsible for
the accumulation within individual bees, which can lead to
bioaccumulation of pesticides throughout the hive (Figure 1).

The risk to honey bees as a result of pesticide exposure is
evaluated by considering both the incidence of exposure and
toxicity of pesticides used. Incidence of exposure is quantified

FIGURE 1 | Bioaccumulation of pesticides in a honey bee colony. Honey bees
are exposed to a wide variety of pesticides through agricultural practices and
modern beekeeping. Typically, farming and other agricultural practices are
responsible for exposing honey bees to insecticides, herbicides, and
fungicides. As honey bees forage for nectar and pollen, they are incidentally
exposed to pesticides which accumulate in the hive by physically transferring
the contaminated food sources to unexposed bees. However, honey bees
can also be intentionally exposed to acaricides and fungicides by beekeepers
in efforts to control mite burden and fungal diseases in the hive. Ultimately,
pesticide bioaccumulation in the hive has the potential to negatively impact all
honey bee ranks.
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by examining the actual usage rates of pesticides, mode
of application, and environmentally-relevant concentrations.
A widely-used metric for quantifying pesticide-specific toxicity
is the lethal dose (LD) at which half the population dies, or the
LD50. This latter metric uses acute exposure (24–96 h) of adult
honey bees to predict a toxic dose. Despite its widely accepted
use, reports of LD50 put less emphasis on larval toxicity and
can also vary widely in methodology and sample size. Moreover,
these LD50-based risk assessments do not consider the effect that
sublethal pesticide exposure can have on honey bees.

In this paper, we evaluate the role of sublethal pesticide
exposure (defined herein as exposure to insecticides, acaricides,
fungicides, and herbicides) in the toxicity and management
of honey bees. To initiate this effort, we first collected a
meta-data set of pesticide-specific LD50 for honey bees by
analyzing published literature in PubMed, Web of Science,
and Google Scholar for studies that contained the following
keywords [honey bee], [LD50], and specific pesticide names.
We excluded articles if (1) they did not report LD50 values
in weight per bee (however, LD50 values reported as weight
per mass were converted to weight per single bee, assuming
that one bee is 100 mg); (2) the article was inaccessible with
current access. In addition to providing both adult and larval
LD50 values, this database also allows for the assessment of
variation in reported LD50 estimates. We then set out to
understand how sublethal pesticide exposure can harm multiple
aspects of honey bee health. Again, we conducted a bibliometric
search for studies that contained combinations of the following
keywords: [honey bees], [pesticide], [sublethal], [development],
[immune], [metabolism], [cognition], and [reproduction]. After
the initial screen, we used forward and reverse citation searches
of individual articles to expand our data set. With the data from
these studies, we are able to construct an impartial summary
of the adverse effects that sublethal pesticide exposure has on
honey bees.

We close by proposing three areas of focus for future studies:
expanding the knowledge of sublethal pesticide exposure to
other pesticides; understanding the role for the microbiota in
aiding host survival toward pesticides; and testing the ability for
probiotics to mitigate the sublethal effects of pesticides.

PESTICIDE TOXICOLOGY IN HONEY
BEES

The dose at which 50% of the population dies (LD50) is a useful
metric for quantifying pesticide-specific lethality and evaluating
sublethal exposure in adult honey bees. Estimates of LD50 can
vary by length of exposure and mode of delivery, so knowing
the oral- and dermal-specific LD50 of individual pesticides can
make a useful predictor of pesticide-associated risk. Further, by
comparing LD50 obtained for pest and beneficial insect species,
we can better assess the trade-off between intended target species
and any collateral damage to pollinators. When combined with
pesticide application rates, these values are useful for calculating
the risk of pesticide use to pollinators. The Hazard Quotient
(HQ = application rate/LD50) is a viable metric to calculate field

use risk of pesticide application but can be erroneous alongside
variable LD50 values (Stoner and Eitzer, 2013).

Despite the potential of comparative analysis, the variation
that is associated with published estimates of LD50 is substantial
for both contact (Table 1) and oral (Table 2) versions of this
metric, which can reduce their value in risk assessment. The
seemingly high variation in LD50 estimates, which can range
up to 500-fold, may stem in part from differences in sample
size, precision of measurement, and experimental protocol. Even
for toxicological studies with a high degree of statistical power,
the variance associated with LD50 can be large (Baines et al.,
2017). This suggests that the genuine effect of pesticides on insect
survivorship may vary strongly between populations, regardless
of how it is measured. Biological sources of variation may
stem from differences in age (young, nurse-age workers versus
older, foraging-age workers), genotype (natural variation as well
as apicultural strains), caste (workers, queens, drones), or life
stage (larvae versus adults) (Rinkevich et al., 2015; Tosi and
Nieh, 2019). A cursory comparison between adult- and larval-
derived LD50 values suggests strong biological variance from life
stages (Table 3). A detailed dataset of all LD50 values collected for
this manuscript can be found in Supplementary Table S1.

Additional sources of variation can occur from the
composition of the pesticide formulations that are used. While
different amounts of solvents used for toxicology analysis can
affect the readout (Wilkins et al., 2013), pesticide adjuvants (other
ingredients found in pesticide formulations that are thought to be
inert) can also influence pesticide toxicity (Chen et al., 2019). An
emerging interest is the potential for synergistic toxicity between
multiple pesticides that are applied in combination. These could
increase overall honey bee mortality, albeit in unpredictable ways
(Johnson et al., 2013; Zhu et al., 2014; Wade et al., 2019). Despite
their relevance under normal field conditions, these aspects
of pesticide toxicology are often overlooked in LD50 studies,
which typically determine the toxicity of individual pesticides in
standard laboratory solvents.

PESTICIDES AFFECT DETOXIFICATION
AND METABOLISM IN HONEY BEES

Like most insects, honey bees use an array of enzymes to
detoxify pollutants and other harmful chemicals that they
may encounter, including pesticides (Gong and Diao, 2017).
However, honey bees are genetically depauperate in a number
of key detoxification genes, with the remainder of relevant
genes expressed at low levels (Claudianos et al., 2006).
Some key detoxifying genes that appear underrepresented
in the honey bee genome include many of the cytochrome
P450 monooxygenases (phase I detoxification—oxidation,
reduction, and hydrolysis of xenobiotics), glutathione-S-
transferases (phase II detoxification—increase water solubility
of xenobiotics for excretion), and carboxyl/cholinesterases
(insecticide resistance) compared to the well-studied insect
model, Drosophila melanogaster (Claudianos et al., 2006).
Although honey bees possess similar amounts of detoxification
genes compared to other members of the Apidae family, they
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TABLE 1 | Range and median of reported contact LD50 values of pesticides for adult honey bees.

Pesticide Name Contact LD50 (µg/bee) Range Quartile Coefficient of Dispersion Number of reports

Abamectin 7.8 N/A N/A 1

Acephate 1.2 0.019 – 1.2 0.727 3

Acetamiprid 17.045 1.69 – 276.85 0.950 6

Aldrin 0.352 0.0605 – 0.353 0.707 3

Aminocarb 0.6165 0.121 – 1.112 N/A 2

Amitraz 2.61 1.986 – 3.66 0.232 4

Carbaryl 1.1 0.055 – 26.53 0.831 15

Chlorpyrifos 0.110 0.024 – 0.320093 0.396 9

Clothianidin 0.03 0.021418 – 0.04426 0.294 5

Coumaphos 22.15 6.232 – 31.2 0.213 6

Cyfluthrin 0.0445 0.001 – 0.0677 0.783 4

DDT 5.95 0.052 – 7.378 0.235 8

Deltamethrin 0.037825 0.0015 – 112.2 1.000 4

Demeton 2.155 0.013 – 2.60 0.712 4

Diazinon 0.1675 0.0011 – 0.372 0.809 6

Dieldrin 0.136 0.0006 – 0.16 0.702 6

Dimethoate 0.16 0.0014 – 0.31 0.273 19

Dinotefuran 0.0378 0.0006 – 0.075 N/A 2

Fenitrothion 0.31 0.171 – 0.383 0.383 3

Fenpyroximate 3.99 3.00 – 6.65 0.378 3

Fipronil 0.008 0.00386 – 0.013 0.388 7

Flumethrin 0.05 N/A N/A 1

Imidacloprid 0.04645 0.0128 – 0.19 0.515 18

λ-cyhalothrin 0.05 0.022 – 0.3 0.694 7

Malathion 0.166 0.002 – 0.726 0.699 8

Methamidophos 204.935 1.37 – 408.5 N/A 2

Methomyl 1.29 0.068 – 1.51 0.914 3

Methyl parathion 0.266 0.041 – 0.348 0.371 6

Mevinphos 0.1875 0.0013 – 0.36 0.899 4

Mexacarbate 0.061 N/A N/A 1

Naled 0.0535 0.0008 – 0.485 0.849 6

Nitenpyram 0.138 N/A N/A 1

Oxamyl 10.26 0.31 – 10.32 0.942 3

Oxalic acid 539.475 372.01 – 1575.85 0.273 6

Oxydemeton-methyl 2.86 0.003 – 3.00 0.834 5

Parathion 0.095 0.003 – 0.175 0.533 6

Permethrin 0.028 0.015 – 0.159 0.747 5

Phosmet 1.13 1.06 – 1.9 0.284 3

Phosphamidon 1.45 0.002 – 1.46 0.997 3

Propiconazole >100 N/A N/A 1

Pymetrozine 0.16 N/A N/A 1

Pyridalyl 6.16 N/A N/A 1

Resmethrin 0.056 0.045 – 0.076 0.468 8

Spinosad 0.058 0.0025 – 0.88 0.737 9

Tau-fluvalinate 8.78 0.448 – 65.85 0.667 9

TEPP 0.002 0.001 – 0.002 0.333 3

Thiacloprid 38.82 14.6 – 122.4 0.787 3

Thiamethoxam 0.04 0.024 – 0.124 0.529 5

Thymol 52.4 51.25 – 55.1 0.036 3

Toxaphene 0.144 N/A N/A 1

Trichlorfon 3.053 0.024 – 5.137 0.991 3

N/A, not applicable; DDT, Dichlorodiphenyltrichloroethane; TEPP, Tetraethyl pyrophosphate.
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TABLE 2 | Range and median of reported oral LD50 values of pesticides for adult honey bees.

Pesticide Name Oral LD50 (µg/bee) Range Quartile Coefficient of Dispersion Number of reports

Abamectin 0.011 N/A N/A 1

Acetamiprid 11.815 0.0215 – 72.9 0.924 4

Amitraz 5.47 N/A N/A 1

Carbaryl 0.125 0.11 – 0.14 N/A 2

Chlorpyrifos 0.25 0.1034 – 0.25 0.415 3

Clothianidin 0.00344 0.000000013 – 0.0269 0.711 14

Coumaphos 26.0 N/A N/A 1

DDT 3.7 N/A N/A 1

Deltamethrin 0.4645 0.079 – 0.85 N/A 2

Diazinon 0.2 N/A N/A 1

Dieldrin 0.325 0.32 – 0.33 N/A 2

Dimethoate 0.14 0.1 – 0.3 0.138 20

Fenpyroximate 3.24 N/A N/A 1

Fipronil 0.2158 0.0528 – 0.28 0.145 4

Flumethrin 0.3525 0.178 – 0.527 N/A 2

Imidacloprid 0.049 0.0000299 – 0.536 0.772 20

λ-cyhalothrin 0.9 N/A N/A 1

Malathion 0.38 N/A N/A 1

Methamidophos 3.7 N/A N/A 1

Methomyl 0.23 N/A N/A 1

Mevinphos 0.027 N/A N/A 1

Oxamyl 0.094 N/A N/A 1

Oxalic acid 223.2 N/A N/A 1

Oxydemeton-methyl 0.31 N/A N/A 1

Parathion 0.13 0.09 – 0.16 0.280 3

Permethrin 0.28 N/A N/A 1

Propiconazole 60.55 57.25 – > 100 0.037 4

Resmethrin 0.069 N/A N/A 1

Spinosad 0.057 0.053 – 0.063 0.086 5

Tau-fluvalinate 9.20 N/A N/A 1

Thiacloprid 19.955 17.32 – 22.59 N/A 2

Thiamethoxam 0.004358 0.00000002 – 0.0112 0.001 10

Thymol 38.1 N/A N/A 1

N/A, not applicable; DDT, Dichlorodiphenyltrichloroethane.

have far less compared to pest insects, thus making honey bees
more susceptible to pesticide exposure (Sadd et al., 2015). The
diminished repertoire of detoxifying genes in the honey bee
might stem from compensatory mechanisms associated with
their highly social behavior, including herd immunity (Evans
et al., 2006; Cremer et al., 2007) and a ‘social detoxification
system,’ which focuses on how hive behavioral dynamics can
reduce the burden of toxin substances on the detoxification
system of individual members (Berenbaum and Johnson,
2015). It is uncertain if the relatively small innate capacity
of the honey bee is fully compensated by social effects or
if the bees remain genetically more sensitive to the toxic
effects of pesticides.

Within colonies, caste and diet can modulate the expression of
detoxification-related genes. Forager bees, for example, express
more detoxification genes than do nurse bees (Vannette et al.,
2015), potentially owing to the heightened risk of exposure
toward environmentally-derived xenobiotics. Moreover, honey

bee diets with ample pollen or nectar provide some resistance
toward pesticides (Schmehl et al., 2014; Tosi et al., 2017b). This
may be achieved by nutrient-mediated increases in detoxification
enzyme gene expression or by improving physiological resilience
through ensuring adequate nutrition levels (Mao et al., 2013).

A lesser explored mechanism for detoxification is the gut
microbiota—a community of microorganisms residing within
the honey bee gastrointestinal tract, consisting of a core set of
evolutionarily adapted bacterial species (Ellegaard et al., 2019)
that compensate for insufficiencies in honey bee metabolism
(Kešnerová et al., 2017; Zheng et al., 2017); thus it may have
a role in detoxification. The microbiota can aid xenobiotic
detoxification by directly detoxifying harmful substances and
indirectly through modulating the host’s detoxification response.
The metagenome of the honey bee gut microbiota is enriched
with carbohydrate and plant chemical metabolizing genes
suggesting a direct role in detoxification (Engel et al., 2012;
Kwong et al., 2014; Lee et al., 2015; Kešnerová et al., 2017).
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TABLE 3 | Median larval LD50 values for various pesticides.

Pesticide Name Median LD50 (µg/larvae) Number of reports

Acephate 1.942 4

Amitraz 98.7185 2

Boscalid 78.78 3

Capatan 4.240 2

Carbaryl 1.466 4

Chlorpyrifos 0.209 5

Coumaphos 2.7 1

Cypermethrin 0.0405 4

Diazinon 0.00008725 4

Diflubenzuron 3.01 3

Dimethoate 1.8 18

Fluvalinate 0.83 1

Imidacloprid 2.785 2

Malathion 0.75 4

Methomyl 0.657 4

Methyl parathion 1.0145 4

Mevinphos 0.459 4

Naled 0.2405 4

Oxalic acid 44.7 1

Parathion 0.14 3

Permethrin 0.242 4

Penfluron 3.09 3

Thiamethoxam 0.1735 2

Thymol 44 1

For example, Lactobacillus kunkeei is able to metabolize
phenolic acids found in pollen (Filannino et al., 2016), while
Gilliamella apicola has the potential to metabolize toxic mannose
constituents that are found in nectar (Barker and Lehner, 1974;
Zheng et al., 2016). By directly metabolizing toxic substances, the
microbiota is able to increase honey bee resistance to xenobiotics.
Microbes can also regulate honey bee detoxification systems
leading to indirect detoxication capability. For instance, the
presence of certain early colonizers during development, such as
Snodgrassella alvi, can modulate phase I detoxification pathways
by affecting the expression of cytochrome P450 (CYP) enzymes
(Schwarz et al., 2016) that are critical for pesticide degradation
(Claudianos et al., 2006).

We do not yet know how gut colonizers influence
detoxification of pesticides in honey bees under natural
conditions, though findings in other insects suggest a major role
for symbiont-mediated regulation of detoxification pathways
(Pietri and Liang, 2018). As the gut microbiota is dependant on
caste (Jones et al., 2018), diet (Maes et al., 2016; Zheng et al.,
2017), and environmental factors (Jones et al., 2017), including
exposure to some pesticides (Dai et al., 2018), studies should
test the ability of the microbiota to either directly degrade
pesticides or promote indirect detoxification of them. Caution
should be exercised when investigating monoculture-based
experiments because they do not account for the complexities of
the entire microbiota, which include host–microbe interactions,
microbe–microbe interactions, and strain-specific differences in
metabolic capacities.

Pesticides themselves can also play a role in modulating
metabolism and expression of detoxification genes.
Boncristiani et al. (2012) showed that honey bees exposed to
thymol and coumaphos have altered cytochrome P450 subfamily
and protein kinase superfamily-related gene expression. These
two gene families can affect resistance to insecticides like DDT
(Le Goff and Hilliou, 2017) and neonicotinoids (Gong and Diao,
2017). Moreover, honey bees exposed to myclobutanil (fungicide)
have impaired cytochrome P450-mediated detoxification of
quercetin (flavonol phytochemical found in nectar and pollen),
which is metabolized by CYP9Q1 (Mao et al., 2017). These
studies reveal that synergistic effects between multiple types of
pesticides can amplify the effective toxicity. As for insecticides,
imidacloprid exposure has been shown to broadly up-regulate
cytochrome P450 expression (Derecka et al., 2013; De Smet et al.,
2017; Zhu et al., 2017), likely in response to the pesticide itself,
thereby facilitating its detoxification.

Honey bees exposed separately to myclobutanil, imidacloprid,
or fipronil have disrupted ATP production (Nicodemo et al.,
2014; Mao et al., 2017), suggesting that exposure to these
pesticides alters cellular metabolism. In particular, Nicodemo
et al. (2014) demonstrated that imidacloprid and fipronil reduce
oxygen consumption and impair mitochondrial function. This
reduction in aerobic respiration is accompanied by an increase
in glycolysis and citric acid cycle-related gene expression in
exposed honey bees (Roat et al., 2014; Renzi et al., 2016a). Thus,
pesticide exposure may be favouring low-efficiency means of
ATP production (glycolysis and citric acid cycle) over higher
efficiency means (oxidative phosphorylation). Interestingly,
using near-infrared light (670 nm) to restore mitochondrial
function can mitigate ATP reduction, diminish physiological
impairments, and improve survival in bumblebees (Bombus
terrestris) (Powner et al., 2016).

PESTICIDES NEGATIVELY AFFECT
MOTOR FUNCTION, BEHAVIOR, AND
COGNITION

Honey bees are highly social insects. They rely on individual
cognition to navigate their environment and respond to
changing conditions and colony needs. Forager bee cognition is
demonstrated by their ability to encode memories of resources,
which are typically found within a 2 – 6 km radius of the hive
(Hagler et al., 2011; Couvillon et al., 2015). These memories
are then transmitted through waggle dances to other foragers
to encourage the process of collecting hive resources, which
promotes success of a colony (Henry et al., 2012). Exposure to
pesticides appears to impair the foraging response in a dose-
dependent relationship.

Acute neonicotinoid exposure induces a series of symptoms
that are consistent with hyper-responsive neural impairments
(Suchail et al., 2001). These are observed as excitation symptoms,
which include increased time in the air, increased flight distances,
and an inability to right themselves when placed on their backs
(Yang et al., 2008; Williamson et al., 2014; Tosi et al., 2017a). By
contrast, chronic exposure induces hypo-responsive neurological
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impairments (Suchail et al., 2001). These include decreased
flight speed, decreased flight duration, and impaired navigation
(Fischer et al., 2014; Tison et al., 2016; Tosi et al., 2017a).
Thus, initial exposure to neonicotinoids can overstimulate
honey bees and induce a hyper-responsiveness, which leads to
exhaustion and hypo-responsiveness over continued exposure.
One implication of this would be that neonicotinoid exposure
drives foragers to go far distances, where they eventually become
exhausted and lose their spatial awareness, thus hampering
collection of resources by preventing them from returning to the
hive. As a result, nurse bees may begin foraging at a younger
age, thus creating a group of precocious foragers, which may
reduce the number of nurse bees available for rearing brood
(Robinson et al., 1989).

Honey bees likely cannot tell if food is contaminated with
pesticides (Williamson et al., 2014; Kessler et al., 2015); so they
are not averse to it. Fortunately, pesticide exposure reduces
trophallactic transfer of food from donor to recipient (Bevk
et al., 2012; Brodschneider et al., 2017). Although this may
reduce the spread of pesticide-contaminated food within a
colony, the change in social behavior may also compromise other
forms of communication, including the waggle dance (which
allows successful foragers to inform others in the colony on
the direction and distance to food and water or new nesting
sites) (Eiri and Nieh, 2016), or reduce larval feeding altogether
(Gil and De Marco, 2005).

The most pronounced pesticide-induced cognitive
impairments are on olfactory learning, visual learning, and
memory. Olfactory learning occurs when honey bees learn to
associate an odour with an award, which is often tested using
the proboscis extension reflex (PER). Honey bees exposed to
imidacloprid show reduced PER activity compared to unexposed
bees (Decourtye et al., 2004; Han et al., 2010; Goñalons and
Farina, 2018). Meanwhile, other pesticides show differential
impairments to both short-term and long-term memory
(Williamson and Wright, 2013; Wright et al., 2015). Pesticides
have likewise been shown to affect visual and associative learning
in honey bees (Hesselbach and Scheiner, 2018). For example,
Han et al. (2010) found that using their T-tube maze, less than
half of bees treated with imidacloprid were able to successfully
make the correct decision in a visual learning task, suggesting
that imidacloprid impaired visual learning. As this is used
to remember food locations and predators, it may explain
why Eastern honey bees (Apis cerana) exposed to sublethal
imidacloprid do not show aversion to the predator hornet, Vespa
velutina (Tan et al., 2014). Imidacloprid may reduce the visual
association of the predator with the cognitive fear response.
Pesticide exposure therefore appears to play a role in cognitive
deficiencies, which may be mediated by direct effects of the
chemicals on the brain.

On a cellular level, pesticides interfere with neuronal
polarization in mushroom bodies, a segment of the honey
bee brain that is associated with learning, memory, and
sensory integration (Plath et al., 2017). Mushroom bodies are
composed of Kenyon cells (neural cells). When these cells
are exposed in vitro to coumaphos oxon (a metabolite of
coumaphos) or imidacloprid, they show a modified synaptic

profile, which is characterized by a slow depolarization, followed
by increased excitability, then inhibition of the action potential
(Palmer et al., 2013). These pesticides are partial agonists of
nicotinic acetylcholine receptors; thus, they could be acting on
these receptors and blocking a natural acetylcholine response,
which will alter the neural cell action potential. The modified
action potential elicited by this class of pesticides may explain
some of the impairment to the aforementioned cognitive
processes. In addition, there appear to be differences in the brain
proteome and microRNA (miRNA) expression of bees exposed
to pesticides (Roat et al., 2014; Shi et al., 2017a; Wu et al.,
2017), which could lead to changes in brain development and
structure that result in differential signalling. An alternate process
to explain neural impairment following pesticide exposure is that
pesticides may interfere with the perception of a stimulus rather
than the cognition of one. Imidacloprid exposure has been shown
to reduce calcium signalling in the antennal lobe in response to an
odours stimulus (Andrione et al., 2016). This results in problems
perceiving the stimulus as opposed to difficulty coding and
recalling the stimulus (cognition). Ultimately, pesticide-induced
cognitive related deficits may be a result of a combination of
impairments to the honey bee brain.

PESTICIDES CAN OBSTRUCT
REPRODUCTION AND DEVELOPMENT

Exposure to pesticides can slow the reproductive cycle of queens
(Figure 2), as illustrated upon exposure to sublethal doses
of thiamethoxam during development, resulting in reduced
body weight and a lower probability of queen success (Gajger
et al., 2017). Likewise, laboratory experiments show that queens
exposed to field-realistic concentrations of neonicotinoids carry
fewer viable spermatozoa and lay fewer fertilized eggs that would
normally develop into diploid (female) workers (Williams et al.,
2015; Chaimanee et al., 2016; Wu-Smart and Spivak, 2016).
Queens that underperform are eventually targeted by workers
for replacement (Sandrock et al., 2014), but in the short-term
reproductive succession is costly to the colony. Furthermore,
queens exposed to sublethal doses of neonicotinoids have been
shown to have reduced mating compared with unexposed queens
(Forfert et al., 2017).

Drones are also affected by pesticides. Sublethal
concentrations of neonicotinoids and phenylpyrazoles can
reduce sperm viability (Kairo et al., 2016, 2017a,b; Straub
et al., 2016), which can hamper fertilization of queens and the
production of diploid workers. Together, reduced sperm transfer
and fertilization may limit the production of a genetically diverse
workforce, which may compromise the division of labour (Jones
et al., 2004) and response to disease (Sherman et al., 1988).

While pesticides are known to interfere with reproduction,
they have also been implicated in changes to larval development.
Honey bee larvae reared in vitro with thiamethoxam (1/10 of
LC50) show atypical progression through developmental stages,
including skipping some stages, and reduced larval weight
(Tavares et al., 2015). In addition, larvae exposed in vitro to the
commonly used herbicide glyphosate show reduced weight and
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FIGURE 2 | Pesticides interfere with colony reproduction. Sexual reproduction between drones and the queen is the source of genetic diversity in the hive. This is
important for pathogen resistance and colony survival. Sublethal pesticide exposure reduces sexual reproduction by affecting the drones and the queen. Drones
exposed to pesticides have lower sperm viability. On the other hand, queens exposed to pesticides display reduced sexual encounters, sperm amount, and sperm
viability. Moreover, pesticide exposed queens have smaller body weights, which may explain the reduction in sperm amount and egg-laying. Developing larvae are
also at-risk during pesticide exposure. They demonstrate atypical progression through developmental phases, reduced larval weight, and delayed moulting. These
may be a result of direct pesticide exposure, but pesticides could also be indirectly affecting larvae. Nurse bees exposed to pesticides produce reduced amounts of
jelly secretions, and that which is produced has less nutritional value, potentially explaining the indirect effects of pesticides on honey bee larvae. Image of larvae in
the hive is adapted from Maori et al. (2019) under Creative Commons Attribution 4.0 International (https://www.sciencedirect.com/science/article/pii/S10972765
19301844).

delayed moulting (uncapping of the brood cell) (Dai et al., 2018;
Vázquez et al., 2018). These laboratory studies are corroborated
by field data showing similar atypical developmental progression
upon pesticide exposure (Wu et al., 2011). At the molecular level,
honey bees exposed to imidacloprid show changes in miRNA
transcription, which are responsible for development (Derecka
et al., 2013). In particular, a reduction in the miRNA, mir-14, has
been observed (Derecka et al., 2013). Although the exact function
of mir-14 is unknown in honey bees, in D. melanogaster it has
been shown to modulate metabolism, nutritional status, and
larval survival (Varghese et al., 2010; Nelson et al., 2014). Thus,
pesticide exposure impairs individual development, contributing
to reduced colony strength.

Honey bee larval development is guided by hormone
signalling and jelly supplementation. Honey bees treated with
coumaphos and fluvalinate (acaricide) show reduced levels
of methyl farnesoate, a precursor to juvenile hormone III
(Schmehl et al., 2014), which is the main juvenile hormone in
insects that functions to regulate honey bee caste differentiation
(Nelson et al., 2007; Mutti et al., 2011) and division of labour
(Fahrbach and Robinson, 1996). Exposure to neonicotinoids
reduces expression of vitellogenin, another protein that is
required for honey bee development (Abbo et al., 2017; Shi
et al., 2017b). As brood develop, they primarily consume jelly,
which is a nutritionally-rich food source produced and delivered
by nurse bees. Sublethal neonicotinoids and fungicides reduce
the size of the hypopharyngeal and mandibular glands where

it is synthesized (Hatjina et al., 2013; Renzi et al., 2016b;
Zaluski et al., 2017), which in turn decreases jelly secretions and
may lead to reduced longevity and smaller honey bee populations
(Yang et al., 2017). The jelly produced may further be deficient in
major proteins (Wu et al., 2017) vital for honey bee development
and physiology (Buttstedt et al., 2014). These changes in hormone
signalling and reduced nutritional value of jelly can contribute
to the atypical development of honey bee larvae exposed to
pesticides. By limiting the amount of viable brood and the rate
at which these few larvae develop, pesticide exposure effectively
reduces the overall workforce and success of the colony.

PESTICIDES DISRUPT HONEY BEE
IMMUNITY

Honey bees exposed to pesticides have increased loads of
bacterial, fungal, and viral pathogens (Pettis et al., 2012; Wu
et al., 2012; DeGrandi-Hoffman et al., 2013; Di Prisco et al.,
2013; Alburaki et al., 2015; Doublet et al., 2015; Chaimanee et al.,
2016; Fine et al., 2017). This has raised concern for the potential
of synergistic interactions between pesticides and pathogens
that exacerbate mortality in honey bees (Alaux et al., 2010a;
Pettis et al., 2013; Paris et al., 2017; Grassl et al., 2018; O’Neal
et al., 2019; Straub et al., 2019; Tesovnik et al., 2019). Vidau
et al. (2011) demonstrated that honey bees previously infected
with Nosema ceranae were more sensitive to subsequent
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pesticide exposure. Parasites like Nosema might therefore
increase pesticide-related mortality, possibly by altering the
expression of detoxification enzymes. As the adult honey bee gut
microbiota develops 4–6 days after eclosion and is composed
of bacteria from older bees and the hive environment (Powell
et al., 2014), one concern would be potential colonization with
disease-causing microorganisms that could alter resistance to
pesticides (Li et al., 2017; Koleoglu et al., 2018). Conversely,
pesticides may cause immunosuppression in honey bees,
rendering them more susceptible to pathogens. To better
understand the possible synergism between pesticides and
pathogens, it is essential to consider individual immunity and
social immunity.

Individual honey bee immunity is divided into humoral
and cellular immune responses, both of which are impaired
by sublethal pesticide exposure (Figure 3). The humoral
response is initiated by recognition of pathogen-associated
molecular patterns (PAMPs), which trigger signalling
through one of the four insect immune pathways: (1) the
Toll pathway, (2) the Immune Deficiency (IMD) pathway,
(3) the c-Jun N-terminal kinase (JNK) pathway, and
(4) the Janus kinase/signal transducers and activators of
transcription (JAK/STAT) pathway (Danihlík et al., 2015).
Activation of these humoral immune pathways leads to
the production of antimicrobial peptides (AMPs), which
can be proteases, complement-like proteins, or broad-
range microbiocidal proteins. In insects, these signalling
pathways and proteins are conserved. However, honey bees
harbour fewer paralogues, gene copies, and splice variants
of immune genes compared to Drosophila and Anopheles
(Evans et al., 2006).

Exposure to pesticides reduces global AMP generation, thus
further compromising an already depauperate immune system
(Garrido et al., 2013; Aufauvre et al., 2014; Tesovnik et al.,
2017; Wu et al., 2017). Although the specific mechanisms by
which AMP production is reduced are largely unknown, Di
Prisco et al. (2013) demonstrated that honey bees exposed
to clothianidin had increased expression of a leucine-
rich repeat protein (Amel/LRR), which is similar to the
D. melanogaster gene CG1399, a negative regulator of NF-
κB signaling (Toll and IMD). Therefore, by increasing the
expression of negative immune regulators, this pesticide acted
to reduce AMP production, leading to higher infection titres
of deformed wing virus (Di Prisco et al., 2013). Although
this study only represents one specific mechanism for one
class of pesticide, it is possible that combined exposure to
multiple classes of pesticide may further dysregulate the
immune response leading to drastic outcomes on pathogen
load and mortality.

Activation of the cellular immune response also occurs
through recognition of PAMPs, but instead triggers migration
of hemocytes, which leads to encapsulation of the pathogen and
activation of prophenoloxidase (PPO) to phenoloxidase (PO).
Active PO catalyzes the production of a melanin polymer capsule
around the pathogen (melanization response). Reactive oxygen
species and nitric oxide intermediates are also created, which are
important in pathogen defence (Paris et al., 2017; Walderdorff

et al., 2018). Neonicotinoid exposure impairs this melanization
response (Brandt et al., 2016, 2017), potentially due to reduction
of PO activity (Zhu et al., 2017) or through the reduction
of reactive oxygen species and nitric oxide (Paris et al., 2017;
Walderdorff et al., 2018). Consequences of this would be reduced
pathogen isolation and clearance, and slower wound healing,
both of which could increase viral loads and systemic infections
(Brandt et al., 2017).

Systemic infections in honey bees could be exacerbated
by acaricide, neonicotinoid, or fungicide exposure, which
reduces intestinal stem cell proliferation (Forkpah et al.,
2014) and increases midgut apoptosis (Gregorc et al.,
2018; Carneiro et al., 2019), potentially weakening the gut
barrier. Hemocytes also function as phagocytic cells in the
honey bee hemolymph; however exposure to neonicotinoids
reduces hemocytes phagocytic activity (Walderdorff et al.,
2018) and hemolymph antimicrobial activity (Brandt
et al., 2016). These pesticide-exposed hemocytes also
display altered differentiation profiles and reduced total
cell counts (Brandt et al., 2016, 2017; López et al., 2017),
another factor that would reduce the magnitude of the
melanization response. Despite the documented consequences
of neonicotinoid pesticides on hemocytes and cellular
immune responses, the mechanisms remain elusive. Studies
on D. melanogaster and Chilo suppressalis demonstrate that
the nervous system can regulate hemocyte proliferation
(Makhijani et al., 2017), and neurotransmitters have a role
in modulating hemocyte phagocytosis (Wu et al., 2015; Qi
et al., 2016). Thus, pesticides may act through the nervous
system to dysregulate hemocytes. Future studies should
explore the mechanisms of pesticide-induced impairment
of hemocytes, with a focus on pesticide dysregulation of
neuro-immune cell signaling.

Social immunity, where individuals contribute to group
health, can arise in different ways—for example, through
individual secretion of peptides that effectively sterilize the
hive environment. Glucose oxidase (GOX) is secreted from
the hypopharyngeal glands and catalyzes the production of
hydrogen peroxide (H2O2) to sterilize the hive. Reeves et al.
(2018) showed that GOX activity is increased in nurse
bees and forager bees exposed to acaricides, tau-fluvalinate,
and coumaphos. On the other hand, Alaux et al. (2010a)
demonstrated that there is a synergistic interaction between
imidacloprid exposure and Nosema infection, whereby GOX
activity is reduced. Differences reported between these studies
may stem from the use of dissimilar classes of pesticides or
experimental methods used. For example, Alaux et al. (2010a)
fed caged bees a sucrose solution, while Reeves et al. (2018)
assayed bees directly collected from hives. Addressing these
disparities, the latter set of bees were exposed to the natural
environment, which would have allowed them access to pollen—
a dietary component that increases GOX activity (Alaux et al.,
2010b). Defensin 1 (Def 1) is a social immunity peptide
that is secreted into the hive environment and is particularly
effective against Gram-positive bacteria. Studies show that Def 1
expression may increase (thiamethoxam) (Tesovnik et al., 2017),
decrease (fipronil) (Aufauvre et al., 2014) or remain unchanged
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FIGURE 3 | Individual honey bee immunity impairment by pesticides. Honey bee immune response toward pathogen-associated molecular patterns (PAMPs) can be
divided into humoral response and cellular response. The humoral response generates antimicrobial peptides (AMPs) through activation of the four immune
pathways: Toll, immune deficiency pathway (IMD), c-Jun N-terminal kinase (JNK), and Janus kinase/signal transducers and activators of transcription (JAK/STAT).
Sublethal pesticide exposure impairs the humoral immune response by reducing the production of AMPs. The cellular immune response is orchestrated through
hemocyte function. Hemocytes can facilitate melanization of pathogens and wounds through activation of prophenoloxidase (PPO) to phenoloxidase (PO) and
reactive oxygen species (ROS) as a by-product. In addition, hemocytes can phagocytosis and clear invading pathogens, as well as differentiation into other immune
cells. Multiple aspects of the cellular immune response are impaired by sublethal pesticide exposure.

(acaricides) (Garrido et al., 2013) in response to exposure of
different types of pesticides.

Honey bees also practice various hygienic behaviors that
reduce pathogen load within colonies, most notably self- or
mutual-grooming and removal of dead bees. Wu-Smart and
Spivak (2016) found that worker bees treated chronically with
imidacloprid displayed significantly reduced hygienic removal
of freeze-killed brood. Likewise, de Mattos et al. (2017)
showed that synthetic acaricides (coumaphos, amitraz, and
tau-fluvalinate), caused workers to groom less, which led to
higher Varroa destructor loads. Meanwhile, Williamson et al.
(2013) showed that acetylcholinesterase inhibitors (coumaphos,
chlorpyrifos, aldicarb, and donepezil) actually increased worker
bee grooming. The discrepancy between these two studies
might be a result of the methodology used. While Williamson
et al. (2013) recorded grooming without a stimulus, de
Mattos et al. (2017) tested grooming in the presence of a
Varroa mite. Nonetheless, it appears that the social immune
response to pesticide exposure is variable and must be
further explored.

A lesser understood aspect of honey bee immunity is
the role of the microbiota in both direct and indirect
pathogen inhibition. It is well documented that through
direct inhibition, microbiota constituents are able to counter
pathogens via competitive inhibition, production of organic

acids, and secretion of antimicrobial molecules (Evans and
Armstrong, 2005, 2006; Forsgren et al., 2010; Olofsson et al.,
2016; Khaled et al., 2018). Additionally, the microbiota can
indirectly improve pathogen resistance by stimulating multiple
aspects of individual immunity. In particular, constituents
of the gut microbiota can activate the humoral immune
system to produce AMPs, that are critical to combating
pathogens (Kwong et al., 2017; Li et al., 2017). Also, organisms
such as Frischella perrara are able to stimulate the cellular
immune response and induce dark-colored ‘scabs’ on the
epithelium of the pylorus, which is a result of melanization
(Emery et al., 2017).

While it has been shown that certain neonicotinoid pesticides
like imidacloprid do not alter the microbiota (Raymann et al.,
2018b), a wealth of evidence suggests that exposure to a variety of
other types of pesticides can alter the abundance and composition
of the gut microbiota (Kakumanu et al., 2016; Dai et al.,
2018; Motta et al., 2018; Blot et al., 2019; Rouzé et al., 2019).
These studies reveal that pesticide exposure mainly decreases
Bifidobacterium spp. and Lactobacillus spp., with some of this
research (Motta et al., 2018; Blot et al., 2019; Rouzé et al., 2019)
suggesting that abundances of S. alvi and G. apicola may also
be affected. These alterations are associated with exacerbated
pathogen mortality (Mattila et al., 2012; Maes et al., 2016; Li
et al., 2017; Rubanov et al., 2019). Therefore, by altering the
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microbiota of honey bees, pesticide exposure increases the insect’s
susceptibility to pathogens.

SOLUTIONS FOR MITIGATING THE
DELETERIOUS EFFECTS OF
PESTICIDES: THE POTENTIAL OF
PROBIOTICS

It is quite evident that pesticides have deleterious effects on
honey bees. Thus, a solution is needed to limit these off-target
effects. Naturally, by completely removing pesticides, honey bees
would no longer be exposed to them, but this solution may
reduce crop yield and burden the food supply (Hossard et al.,
2014). Another idea is to circumvent pesticide use by mandating
better farming practices that reduce damage from pests (Lechenet
et al., 2014). However, these methods are subject to the legislative
process and competing interests, and do not empower beekeepers
themselves with a means to combat the pesticide issue. As
pesticides may increase the likelihood of infection, beekeepers
have a few methods to reduce pathogen-associated honey bee
mortality. They routinely use fungicides and acaricides to
prevent Nosema and Varroa infection. However, these chemicals
adversely affect the bees. Antibiotics used to combat bacterial
pathogens such as Paenibacillus larvae (American foulbrood)
and Melissococcus plutonius (European foulbrood), also disrupt
the microbiota of honey bees, increase antibiotic resistance in
pathogens, and ultimately increase mortality (Alippi et al., 2014;
Krongdang et al., 2017; Li et al., 2017; Raymann et al., 2017,
2018a). All things considered, conventional solutions are not
effective at combating honey bee decline and the need for new
approaches is evident.

One novel concept may be through supplementation
with lactic acid bacteria (LAB; such as Lactobacillus and
Bifidobacterium spp.) to mitigate the harmful effects of pesticides
and pathogens. The basis for this is several-fold, but the most
discernible benefit of LAB supplementation is that it can reduce
pesticide absorption via degradation (Islam et al., 2010; Lénárt
et al., 2013; Zhang et al., 2016; Li et al., 2018) or by sequestering
ingested pesticides, thereby allowing them to pass through the
digestive tract rather than be absorbed (Trinder et al., 2016). In
other model organisms, LAB have been shown to reduce toxicity
and have a protective effect to the host (Bouhafs et al., 2015;
Bagherpour Shamloo et al., 2016), thus establishing a basis for
future studies to investigate this potential in honey bees.

Collectively through direct and indirect mechanisms of
pathogen resistance, supplementing honey bees with beneficial
bacteria is able to reduce Nosema spore counts (Sabaté et al.,
2012; Maggi et al., 2013; Corby-Harris et al., 2016; Arredondo
et al., 2018) and P. larvae bacterial load (Forsgren et al., 2010;
Arredondo et al., 2018; Daisley et al., 2019). In vivo evidence
from a D. melanogaster model of pesticide exposure has shown
that supplementation with LAB improves immunity of pesticide-
exposed flies via immune stimulation (Daisley et al., 2017; Chmiel
et al., 2019). Likewise, LAB are able to stimulate AMP production
in honey bees and improve survival during Paenibacillus larvae
infection (Evans and Lopez, 2004; Daisley et al., 2019). Together

these studies demonstrate that beneficial bacteria can indirectly
contribute to pathogen resistance by stimulating the immune
system and assisting the host in overcoming infection.

Some LAB are able to directly inhibit pathogens, thus
enhancing overall honey bee resistance to pathogens. For
example, isolates of L. kunkeei have been shown to inhibit
N. ceranae, P. larvae, and Serratia marcesscens (Forsgren et al.,
2010; Olofsson et al., 2016; Al-Ghamdi et al., 2017; Arredondo
et al., 2018). Lactobacillus kunkeei also produces biofilms in
honey bees, which facilitates its vertical transmission from one
generation to the next (Vásquez et al., 2012). Another LAB,
Lactobacillus apis R4BT , can inhibit P. larvae and M. pluntonius,
in vitro (Killer et al., 2014). Some Bifidobacterium species inhibit
P. larvae and S. marcesscens, and when found adequately in
the microbiota they are associated with reduced pathogen load
(Forsgren et al., 2010; Mattila et al., 2012; Olofsson et al., 2016).
Honey bee-derived Lactobacillus johnsonii CRL1647 is a well-
documented LAB shown to reduce the abundance of Nosema
and Varroa in the hive (Audisio et al., 2015). Although the
mechanism for direct pathogen inhibition is not completely clear,
it is likely a combination of the production of organic acids
(Maggi et al., 2013), bacteriocins (Audisio et al., 2018), and other
antimicrobial proteins (Butler et al., 2013). The net effect is that
this is a viable method to mitigate the immune impairment
caused by sublethal pesticide exposure, and beneficial bacterial
supplementation could prove as an alternative to antibiotic use
by reducing pathogen burden.

In addition, beneficial bacteria can bolster colony
development, which is notably decreased by pesticide exposure.
Honey bees supplemented with LAB typically produce more
honey, have more pollen stores, and have increased brood
counts (Audisio and Benítez-Ahrendts, 2011; Audisio et al.,
2015; Alberoni et al., 2018; Fanciotti et al., 2018). For example,
L. johnsonii CRL1647 stimulates egg-laying, which can increase
the hive population (Audisio and Benítez-Ahrendts, 2011).
These positive effects have been partially attributed to organic
acid production (Maggi et al., 2013), but could also be attributed
to microbiota restoration as ‘non-thriving’ hives typically have
lower levels of Lactobacillus and Bifidobacterium compared to
‘thriving’ hives (Ribière et al., 2019).

The long-standing challenge to supplementing honey bees
with beneficial bacteria is in the delivery method (Figure 4).
A number of commercial bee supplements containing dried
LAB suggest ‘dusting’ frames with the bacteria, which may
also promote grooming. Although this application method is
minimally invasive, the efficacy is not well known. Moreover,
dusting is prone to uneven distribution and is negatively
impacted by moisture and humidity.

More commonly, beneficial bacteria are added to sucrose-
based syrup solutions. Numerous studies have demonstrated that
various bacteria supplemented in this manner can reduce Nosema
ceranae loads (Baffoni et al., 2016), improve overwintering death
rates (Kuzyšinová et al., 2016), and increase brood populations
and harvestable honey by ∼46% and ∼60%, respectively
(Alberoni et al., 2018). However, a critical factor limiting
the practicality of this method in the field is the lacklustre
viability and activity of bacteria in sucrose-based solutions (>90%
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FIGURE 4 | Comparison of methods for beneficial bacteria supplementation. Beneficial bacteria are usually combined with a vehicle to supplement honey bees in
one of three ways: powder supplementation, sucrose syrup, or pollen patty. Powder supplementation can be easily performed by spreading a probiotic infused dust
on the beehive, which also promotes bees to groom. However, it is prone to uneven distribution, negative impacts of moisture, and unknown efficacy as an
application method. Sucrose syrup supplementation can be achieved by adding probiotics directly to conventional sucrose feeders for the hive. Although this
method benefits from a small nutrient enhancement, the sucrose solution is not usually distributed well to all members of the hive, and it is an unfavourable
environment for the bacteria. Pollen patty supplementation involves adding beneficial bacteria directly to a traditional pollen supplement. In addition to the added
nutrient benefit, pollen patty supplementation will be distributed throughout the hive to both adult bees and larvae. However, if sufficient nutrient sources already
exist, then the pollen patty may be disregarded by the hive. Moreover, it is prone to hardening over time and could attract unwanted pests. Langstroth beehive image
modified from Net Art under the Creative Commons Attribution 2.0 Generic License (https://netart.us/box-shaped-beehive-coloring-page/).

drop in original CFU after 96 h at 30◦C) due to osmotic
stress (Ptaszyńska et al., 2016b). Additionally, this method of
supplementation may not transfer bacteria to younger bees and
larvae (Brodschneider and Crailsheim, 2010).

Another option is to infuse beneficial bacteria into pollen-
substitute patties, which have the advantage of improving
honey bee nutrition. Pollen-substitute patties per se have been
shown to benefit honey bee health through reducing titers
of deformed wing virus (DeGrandi-Hoffman et al., 2010) and
increasing hemolymph protein content (Jong et al., 2009).
Evaluating pollen substitutes as a delivery method, Kaznowski
et al. (2005) demonstrated that hives supplemented with
probiotic-infused pollen substitutes had better overall survival,
higher dry mass, and increased crude fat levels of bees
when compared to groups receiving only the pollen-substitute.
Another study showed that honey bees receiving probiotic
bacteria delivered via pollen-substitutes have better developed
peritrophic membranes (responsible for nutrient utilization and
pathogen protection) compared to vehicle controls (Szymaś
et al., 2012). Some points to consider are that pollen-
substitute patties may attract unwanted opportunistic insects
(for example the small hive beetle, Aethina tumida) and it may
not be consumed if other pollen sources exist. Nonetheless,
pollen substitutes are already used by beekeepers to ensure
nutritional adequacy and can be easily supplemented with
beneficial bacteria.

Along with the introduction of any live microorganism to
the hive comes the risk of inducing hive microbial dysbiosis
(Alberoni et al., 2016). A few documented cases exist in which

negative effects were observed from supplying honey bees with
supplemental bacteria. Ptaszyńska et al. (2016b) reported that
supplementation with L. rhamnosus (no strain type provided)
increased honey bee susceptibility toward nosemosis C. In the
same year, Ptaszyńska et al. (2016a) also demonstrated that
co-administration with three LAB (Lactobacillus acidophilus,
Lactobacillus delbrueckii, and Bifidobacterium bifidum—no strain
designations provided) led to a decrease in total yeast
concentrations in adult honey bee guts, but an increase in
N. ceranae spores following infection. It is difficult to ascertain
the biological relevance of these findings as crucial details are
missing, including (1) strain-type information of lactobacilli
used, (2) confirmation that live bacteria actually reached their
target destination in the adult honey bee gut, and (3) whether or
not the apparent increase in Nosema spp. led to any measurable
changes in individual or hive-level health outcomes. Johnson
et al. (2014) found no net positive or negative effect on hive
health or performance following supplementation of lactobacilli
in a high-fructose corn syrup vehicle. Altogether, these findings
remind us to take precautions with biological agents, and stress
the importance of properly considering strain type when selecting
candidate lactobacilli for in-hive supplementation.

CONCLUDING REMARKS

Pesticide exposure at high doses is a notable causal factor
involved in honey bee population decline; however, sublethal
pesticide exposure presents inconspicuous threats to honey
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bees. In particular, it negatively affects reproduction, immunity,
physiology, and cognition. Beginning at the reproductive cycle,
sublethal exposure to pesticides impairs sexual reproduction,
reduces egg-laying, and hinders larval development.

Sublethal pesticide exposure is broadly immunosuppressive
and leads to increased levels of pathogens, as well as eliciting a
biphasic response on movement and flight, which is mediated by
severity of exposure. Acute exposure causes hyper-responsiveness
and increased movement, while chronic exposure leads to hypo-
responsiveness and reduced movement. Sublethal pesticides
exposure causes numerous impairments to brain function,
affecting harmony and productivity in the hive, and the ability
to find new resources.

Despite the extensive knowledge of the sublethal effects
of neonicotinoids, research on other pesticide classes is
underrepresented, with a notable absence in work on fungicides
and herbicides. Future studies should aim to methodically
determine and report LD50 values for any pesticide tested,
thereby ensuring that LD50 values are accurate and comparable
throughout the world.

Bacteria are able to directly detoxify toxins and/or stimulate
host detoxification, which could be advantageous in reducing
pesticide uptake in honey bees. As the microbiota is affected by
diet, this may potentially lead to the development of products
that reduce pathogen burden by complementing the immune
system through modification of the gut microbiota. In that
regard, probiotic supplementation could mitigate the sublethal
effects of pesticides by reducing pesticide uptake, improving
pathogen resistance, and mitigating sublethal effects on colony

development. Until chemical agents are no longer used in
agriculture, the ability to supplement honey bees with probiotics
could help the insects fight the unintended pernicious effects.
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