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Abstract

Neonicotinoid seed treatments, typically clothianidin or thiamethoxam, are routinely applied

to >80% of maize (corn) seed grown in North America where they are marketed as a tar-

geted pesticide delivery system. Despite this widespread use, the amount of compound trans-

located into plant tissue from the initial seed treatment to provide protection has not been

reported. Our two year field study compared concentrations of clothianidin seed treatments in

maize to that of maize without neonicotinoid seed treatments and found neonicotinoids pres-

ent in root tissues up to 34 days post planting. Plant-bound clothianidin concentrations fol-

lowed an exponential decay pattern with initially high values followed by a rapid decrease

within the first ~20 days post planting. A maximum of 1.34% of the initial seed treatment was

successfully recovered from plant tissues in both study years and a maximum of 0.26% was

recovered from root tissue. Our findings show neonicotinoid seed treatments may provide pro-

tection from some early season secondary maize pests. However, the proportion of the neoni-

cotinoid seed treatment clothianidin translocated into plant tissues throughout the growing

season is low overall and this observation may provide a mechanism to explain reports of

inconsistent efficacy of this pest management approach and increasing detections of environ-

mental neonicotinoids.

Introduction

The neonicotinoids are a relatively new group of systemic insecticides. The first commercially

available compound, imidacloprid (Bayer CropScience), was available in the early 1990s, with

other compounds following in the 2000s. They have since become the most widely used insec-

ticide class worldwide [1,2]. Their rapid and widespread adoption has been attributed to low

mammalian toxicity, systemic and translaminar properties, lack of resistance upon market

entry, increasing restrictions and regulations on older pesticide groups, and potential for a

wide variety of application methods [3]. Neonicotinoids are most frequently used as seed treat-

ments (ST), comprising 80% of the ST market worldwide in 2008 [1]. Maize (corn), along with

the other three major US field crops (soybean, wheat, and cotton) by area planted [4], all have

neonicotinoid seed treatment (NST) registrations using the active ingredients (AI) imidaclo-

prid, clothianidin (CLO) (Bayer CropScience), and thiamethoxam (Syngenta Crop Protection)

[5].
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The neonicotinoids are used in US maize production solely as STs, with >80% of maize

planted annually being treated with either CLO or thiamethoxam at application rates of 0.25–

1.25 mg/kernel prior to sale to the grower [5,6]. While Bt hybrids largely control damage from

the western corn rootworm (Diabrotica virgifera virgifera LeConte) [7,8], the primary maize

pest of Indiana [9] (recent resistance notwithstanding [10]), the 1.25 mg/kernel rate is also

labeled to control the larval stage of this pest [11,12]. NSTs are also labeled to control a range

of other secondary, early season root and seed pests including wireworms [13], seedcorn mag-

gots [14], and white grubs [15]. White grubs preferentially attack the root tissue of young seed-

lings [16] and wireworms occasionally burrow into the stems of young seedlings [17] however,

both will readily feed on the germinating seed [18], the primary site of seedcorn maggot attack

[14]. While seedcorn maggot injury pressure can be reliably predicted based upon incorpo-

ration of a green cover crop into the soil [19], economic infestations of these secondary pests

are typically sporadic and difficult to predict [17]. This has in part, led to the widespread adop-

tion of NSTs as a prophylactic measure of minimizing pest damage risk.

Both CLO and thiamethoxam are hydrolytically stable with relatively high respective solu-

bilities of 0.327 g/L at 20˚C and 4.1 g/L at 25˚C; these solubilities confer systemic properties

[20]. Despite widespread use in maize systems, little has been published on the translocation

efficiency of the NST delivery method in maize, or the distribution and concentration of these

compounds throughout the plant once material is translocated [21]. A potted plant study [22]

found thiamethoxam shoot concentrations in maize to be 0.62 μg thiamethoxam/g 21 days

post plant (DPP) with a gradual concentration decrease to 0.13 μg thiamethoxam/g at 36 DPP

from an initial 0.1 mg thiamethoxam per kernel ST. Root tissue thiamethoxam was not quanti-

fied nor ST efficacy, viewed in terms of the percentage of initial ST translocated to plant tissue.

Furthermore it is unknown what concentrations would provide a pest management benefit.

To inform the debate surrounding the costs and benefits of this management approach, these

data represent key parameters in defining a “pest management window” where these products

could be expected to provide crop protection, as well as informing environmental fate studies

once the AI is liberated from the seed.

Previously published greenhouse studies examining imidacloprid ST in maize report 20%

of the AI being translocated into the plant with the remaining 80% assumed to enter the soil

matrix and/or leach away from the plant and its root zone [23]. Once applied and within soil,

the time required to dissipate 50% of the applied AI (DT50) is highly variable within and

between neonicotinoid compounds. The DT50 of imidacloprid, thiamethoxam, and CLO, the

three compounds used in NSTs [3], are 40 [24] to 270 [25], 7.1–92.3 [26], and 277–1386 days

[27] respectively under field conditions. There is no published work explaining the high vari-

ability in published DT50 values [21].

Given their soil persistence and repeated use, concern exists over the potential of neonicoti-

noids in environmental loading and water contamination via leaching and field runoff [27].

While not the only metric used to assess leaching risk, the Groundwater Ubiquity Score (GUS)

[28] relates the compound’s soil organic carbon-water partitioning coefficient (Koc), and DT50

and assigns high, medium, and low leaching potentials to respective GUS values of>2.8, 1.8–

2.8, and<1.8. Both CLO and thiamethoxam have GUS values of 5.43–6.98 and 1.84–4.25 each,

based upon respective Koc values of 60 and 68.4 [29,30] and DT50 values listed above.

Increasing detections of neonicotinoids in a range of surface and ground waters have been

reported. A few of these studies [31–34] suggest water contamination as the direct result of

runoff or leaching and in multiple instances, concentrations exceeded either chronic [31–

33,35,36] or acute [36] toxicity benchmarks for freshwater invertebrates [37]. Detection of

neonicotinoids in non-target vegetation has also been attributed to lateral subsurface move-

ment in the USA [38], the UK [39], and implicated as a pathway for neonicotinoid
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contamination of organic fields [40]. Although little has been published quantifying the ulti-

mate impact of these compounds in the environment, correlative studies have indicated that

these compounds may be causal agents of long-term macroinvertebrate decline in surface

water [41], (although this hypothesis has been disputed as not accounting for the presence of

other insecticides [42]) and of insectivorous bird populations [43].

The numerous examples of environmental detections of neonicotinoids coupled with a var-

iable soil half-life highlight the potential of these compounds to accumulate in the environ-

ment. However, the mechanism is unclear. A key unknown in untangling these mechanisms is

the amount of material that enters the target (i.e. crop plants). It is the purpose of this paper to

quantify these levels in space (various plant regions) and time (across the early growing season)

in order to: 1) define the pest management window afforded by these compounds and 2) deter-

mine one component of the environmental fate of the NST. The work described here provides

baseline information on the translocation of the major NST of maize, CLO, into various

regions of the growing plant, using field-collected plants beginning at seed sowing and con-

tinuing through the growing season.

Methods

2014 & 2015 field site and experimental design

Planting of hybrids Dekalb 6179 (2014) and Spectrum 6241 (2015) took place on May 5th at

the Throckmorton Purdue Agricultural Center (40˚18’00.7"N 86˚43’37.0"W). The 5-year pre-

cipitation average in May (mean ± sd) for this site is 67.2 ± 27.96 mm and the soil is character-

ized as loam with a 43.6/38.4/18 sand/silt/clay ratio. Four treatment levels were evaluated:

untreated seed (“Naked”), in which no ST was applied, a fungicide only ST (“Fungicide”), a

low rate applied at 0.25 mg CLO/kernel (“Low”), and a high rate of 1.25 mg CLO/kernel

(“High”). The “Fungicide”, “Low” and “High” treatments were also treated with the fungicides

metalaxyl, trifloxystrobin, and ipconazole at respective rates of 0.92, 4.79, and 2.4 g/100 kg of

seed. Each treatment level was replicated four times in a randomized complete block design

with treatment plots measuring 3.05 x 36.58 m in 2014 and 3.05 x 33.53 m in 2015. The previ-

ous crop in both years was a “trap crop” of late planted maize to maximize western corn root-

worm egg deposition. The late season “trap crop” was comprised of corn hybrids expressing Bt

genes targeting lepidopteran pests and treated with the “Low” CLO rate. Given the instances of

subsurface flow [38–40], and proximity of untreated plots to treated plots (plots ~3m wide),

CLO contamination of untreated plots was expected and inevitable–a truly neonicotinoid-free

field is not achievable in the maize and soybean production areas of North America [5].

Attempts were made to minimize contamination by only collecting samples from the 2 central

rows of each plot.

2014 & 2015 sampling, root ratings, stand, yield

Sampling consisted of removing ten randomly selected maize plants intact from each plot and

storing them at -20˚C for later processing. Five of these ten samples were processed with a

modified QuECHeRs protocol [44] (details in S1 Text) with the remaining five serving as

reserve samples. At 21 days post planting (DPP), plant tissue CLO concentrations were

expected to approach zero based upon preliminary data gathered in 2013, so sampling was

reduced to five plants per treatment plot every other week with three of the five samples being

processed and analyzed. Sampling was concluded at 61 DPP in both years as CLO concentra-

tions in treated plants were expected to approach the CLO concentrations of untreated plants

by this time based upon preliminary data. Increases of in-plant CLO concentrations were not

expected either. Stand counts were conducted at the V2/V3 stage on June 3rd and 8th in 2014
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and 2015 respectively to assess seed germination. Root damage by the western corn rootworm

was scored [45] on July 18th and the 23rd in 2014 and 2015 respectively. An average treatment

plot root rating was calculated from four roots in 2014 and five roots in 2015. Maize was har-

vested and yield calculated on October 10th in 2014 and October 15th in 2015 after adjusting

maize moisture to 15.5% [46].

Calculation of economic damage

The minimum node-injury required to cause economic damage was calculated for both

sampling years using the Oleson et al. method [45]. Calculations included a range of insect

control costs ($17.5-$55/ha), assumed a moderate level of environmental stress (21.7 heat

stress degree-days) and used an average of $14.96/100 kg for market value given the similar-

ity of Indiana maize marketing values between 2014 and 2015 ($14.76 and $15.15/100 kg

respectively) [47].

Sample preparation for chemical analysis

A modified QuECHeRs protocol [44] (details in S1 Text) was used to prepare samples for

chemical analysis in both years. Individual samples were split into root, seed, and shoot regions

in both years (Fig 1) after residual soil was removed from plant tissue by running the sample

underneath a gently running faucet. For samples weighing<1 g per plant region, the root region

was considered the radicle and seminal roots, while the shoot region was defined as all plant tis-

sue from the base of the mesocotyl to the stem apex. For samples weighing>1 g per plant region

(samples collected after 20 and 16 DPP in 2014 and 2015, respectively), subsections of the stem

Fig 1. Diagram of a maize seedling at the soil surface interface, showing (a) Stem apex, (b) coleoptile,

(c) nodal roots, (d) mesocotyl, (e) seed, (f) seminal roots, and (g) radicle roots. For homogenization

purposes, the shoot region was classified as sections (a-d), the seed region as (e), and the root region as (f)

and (g).

doi:10.1371/journal.pone.0173836.g001
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apex, the area of newest growth, and of a randomly selected root were used for homogenization

and further analysis of shoot and root regions, respectively. No more than 1 g of plant tissue was

used per tissue region due to space limitations of homogenization tubes. Root and shoot regions

for a given sample were scored as “complete” (>80% present) or “incomplete” (<80% present)

prior to homogenization. An average % AI translocated for each plant region (root and shoot)

was calculated from these data. If both the corresponding root and shoot region of a given plant

was scored as “complete”, the plant was scored as a “total sample” and the respective concentra-

tions for both regions were combined to calculate an average overall % AI translocation per

plant.

Determination of pest activity period

The active period of western corn rootworm, seedcorn maggot, wireworm, and white grubs

was estimated in both years to compare it to the NST protection window. For western corn

rootworm, this was accomplished by checking maize roots daily in a nearby field until observa-

tion of neonate western corn rootworm larvae. The seedcorn maggot, wireworm, and white

grubs were not directly monitored as they were not present in our study field, and economic

infestations are typically sporadic and unpredictable [17]. Egg hatch for seedcorn maggot was

estimated with a degree day model [48] used in conjunction with atmospheric data [49]. Adult

seedcorn maggot emergence and subsequent oviposition occurs in early May for central Illi-

nois [16], so calculations assumed adult emergence occurred on May 1st for Indiana given the

similarity in latitudes. Degree-day models were inappropriate to define an active period for

wireworm and white grubs due to their multispecies status so peer-reviewed and extension lit-

erature was searched instead [50].

Statistical analyses

Effects of NST on yield, stand count, and root ratings. Yield, stand count, and root rat-

ings were analyzed using SAS PROC MIXED [51] in both years. Treatment and block was

included as fixed effects in all six models. A Tukey (HSD) post-hoc analysis was used to sepa-

rate which treatment means were significantly different from each other (α< 0.05) following a

significant test result (P< 0.05) [52].

Determination of protection window. Two different approaches were used to estimate

the pest management window. The first approach fit a first order decay function [53] using a

Levenberg-Marquardt nonlinear least-squares algorithm with the package minpack.lm in the

R statistical language [54,55] to translocation data for each plant region (root, seed, and shoot)

as a function of DPP. Decay curves were visually examined to estimate at what DPP the rate of

change decreased to where concentration appeared to “flatten out”. Protection was considered

lost at this point.

The second, more conservative approach, analyzed translocation data using a multivariate

approach to repeated measures with SAS PROC GLM [51]. Prior to analysis, data were natural

log transformed to conform to normality assumptions and confirmed with visual inspection of

residuals. Separate models were used for each plant region (root, seed, shoot) in both sampling

years (2014, 2015). Fixed main effects included treatment, block, sampling date, and a multi-

variate treatment�sampling date interaction effect as predictors of CLO concentration. Univar-

iate results of the repeated measures ANOVA were analyzed in concert with visual inspection

of decay functions to inform designation of appropriate linear contrasts (α = 0.05) for deter-

mining when the residue curves converged in time. When CLO concentration in treated plants

was similar to the untreated controls, any protection afforded by the NST was considered
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expired. Two sets of contrasts were made: “Naked”+“Fungicide” vs “Low” and “Naked”+“Fun-

gicide” vs “High”.

Results

Sampling and effects of NST on yield, stand count, and root ratings

In 2014, sampling and AI extraction was carried out at 6, 8, 10, 13, 15, 17, 20, and 34 DPP and

at 5, 7, 9, 12, 14, 16, 19, 47, and 61 DPP in 2015. Freezer failure resulted in no AI extraction

past 34 DPP in 2014 samples and resulted in the loss of 33 DPP samples in 2015. The seed

region was only recovered up to 20 and 19 DPP in 2014 and 2015 respectively. The limit of

CLO detection was determined to be 0.1ng/g.

In 2014, neither treatment or block had a significant effect on root ratings (F3,9 = 0.98,

P = 0.4431; F3,9 = 0.83, P = 0.5097). For yield, only block had a significant impact (F3,9 = 13.65,

P = 0.001) whereas treatment did not (F3,9 = 1.06, P = 0.4131). Neither variable had a signifi-

cant effect (Treatment: F3,9 = 0.50, P = 0.6937; Block: F3,9 = 2.73, P = 0.1063) on stand count

(Table 1).

In 2015, neither treatment (F3,9 = 1.57, P = 0.2639) or block (F3,9 = 3.44, P = 0.0654) had a

significant effect on root ratings, stand (Treatment: F3,9 = 2.57, P = 0.1193; Block: F3,9 = 0.93,

P = 0.4646), or yield (Treatment: F3,7 = 0.83, P = 0.5192; Block: F3,7 = 1.78, P = 0.2392)

(Table 1).

Calculation of economic damage

The minimum node-injury required to cause economic damage in both sampling years ranged

from 0.245–0.771 with a respective control cost of $17.5-55/ha. Economic injury levels were

only reached in 2015 in the “Low” and “Fungicide” treatment plots with a control cost<$27/

ha and<$32.5/ha respectively (Table 1 and Fig 2).

Translocation efficacy

For all plant regions, a greater proportion of the initial CLO seed treatment was successfully

translocated in 2015 plants (Fig 3). A maximum of 0.26 and 1.18% of the initial “Low” treat-

ment rate was translocated to respective root and shoot tissues in 2015 whereas a maximum

Table 1. Means of yield, plants per hectare and root ratings for both 2014 and 2015 field season. Within a given column and year, means followed by

the same letter denote statistical similarity as determined by Tukey HSDa comparisons.

2014 Yield±SE (kg/ha) nb Plants per Hectare±SE nb Root Ratings ±SE nb

Naked 13216±547 a 4 13331±2305 a 4 0.006±0.004 a 4

Fungicide 13741±618 a 4 12737±289 a 4 0.031±0.012 a 4

Low 13997±523 a 4 14610±1302 a 4 0.019±0.008 a 4

High 13743±859 a 4 12935±1037 a 4 0.028±0.017 a 4

2015

Naked 13159±552 a 4 13398±615 a 4 0.193±0.059 a 4

Fungicide 12072±890 a 3c 13398±260 a 4 0.456±0.259 a 4

Low 13423±501 a 3c 12208±440 a 4 0.378±0.166 a 4

High 13266±184 a 4 13750±239 a 4 0.128±0.006 a 4

aP < 0.05.
bNumber of observations used in calculating mean and SE in previous column.
cData from two plots were lost due to combine malfunction.

doi:10.1371/journal.pone.0173836.t001
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translocation of 0.20 and 0.65% was recovered in the root and shoot region with the “High”

treatment. In all instances, less than 1.5% of the initial ST was translocated to the root and

shoot region in “total sample” homogenizations. The “High” treatment rate experienced a

greater proportion of the initial ST translocation in 2014 but not in 2015, where the “Low”

application rate resulted in greater overall translocation.

Determination of pest activity period

The first western corn rootworm neonate larvae of the season were observed at 27 and 28 DPP

in 2014 and 2015, respectively (Fig 4). Larval emergence from overwintered eggs typically

occurs during late May to early June in this region of Indiana [56]. Our seedcorn maggot model

predicted egg hatch at planting and one day before in 2014 and 2015, with larval development

(the damaging stage) being completed at 16 DPP and 12 DPP for 2014 and 2015, respectively.

No defined “attack period” for our study region is reported in peer-reviewed literature for

white grubs and wireworm beyond that of a generalized early season root and seed feeding

pest [17], however extension literature [50] places white grub and wireworm attack from mid-

April to mid and late June respectively in Indiana; these estimates are necessarily variable as

they depend largely upon degree day accumulations. For the purpose of this project, the end of

white grub and wireworm attack was considered June 15th (41 DPP) and June 30th (56 DPP)

respectively.

Determination of protection window

The exponential decay equation explained 34.4–46.1% and 54.1–86% of the variance in tissue-

bound AI concentration for the respective root and shoot regions of treated plants. In compar-

ison to NST plants in both years, “Naked” plants had lower R2 values indicating a smaller

Fig 2. The minimum node-injury score required to cause economic damage calculated according to

the Oleson et al. (2005) moderate environmental stress model. 2014 and 2015 are represented as an

inverted triangle with dashed lines and crosses with dotted lines respectively. 2012 price data is included to

show how recent (five year) high commodity values affect economic thresholds and is represented as a filled

circle with solid lines.

doi:10.1371/journal.pone.0173836.g002
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proportion of explained variance resultant from the DPP predictor and exponential fit

(Table 2). Root and shoot regions had larger R2 values than their corresponding seed region

indicating tissue-bound AI concentration better conformed to the exponential decay predic-

tion. This was characterized in the root region by a flattening out of the decay curve around 17

and 20 DPP for the “Low” treatment and 15 and 25 DPP for the “High” treatment in 2014 and

2015 respectively (Figs 4 and 5). By taking the average of both years for each treatment type,

the protection window in the root region for “Low” and “High” treatments was considered to

be 18.5 DPP and 20 DPP respectively. For the shoot region, the flattening out of the decay

curve occurred around 17 and 22 DPP for the “Low” treatment and 20 and 33 DPP for the

Fig 3. Mean percentage of initial clothianidin application translocated to root, seed, and shoot tissues. The Low and High treatment

rates are represented by an open triangle with dashed lines and an open circle with a solid line respectively. Only plants with >80% of root and

>80% of shoot tissue were used in calculation of the % of initial AI translocated. The 2014 data represented by graphs (a), (c), and (e), and

2015 data by graphs (b), (d), and (f). The first 20 days post planting (DPP) are shown.

doi:10.1371/journal.pone.0173836.g003
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“High” treatment in 2014 and 2015 respectively. The decay curve was not used to estimate a

protection window for the seed region given its overall poor fit to the data.

A significant multivariate treatment�sampling date interaction was recorded once in the

Root 2014 model (Table 3) indicating relative treatment differences of in-plant CLO concen-

trations were similar across the sampling period in the remaining models. As the univariate

treatment effects in all models remained highly significant (P<0.001) until 20 DPP (Table 4),

Fig 4. Values of μg clothianidin per g of plant tissue fit to a first order decay equation with time as a predictor. The

root region is represented by graphs a and c whereas the seed region by graphs b and d. Actual concentrations for the seed

region are displayed given the poor fit of predicted values. Dashed and solid lines represent the 0.25 and 1.25 mg /clothianidin

application rates. The pest activity period is displayed underneath the graphs with activity indicated by a filled in box.

doi:10.1371/journal.pone.0173836.g004

Table 2. R2 values describing the fit of the translocation data as a function of days post planting

(DPP) for clothianidin as estimated by the exponential decay function: C = C0e−kt.

Region Treatment 2014 2015

Root Naked 0.101 0.304

Fung 0.499 0.618

Low 0.461 0.344

High 0.421 0.437

Seed Naked 0.272 0.214

Fung 0.287 0.400

Low 0.494 0.041

High 0.244 0.027

Shoot Naked 0.351 0.344

Fung 0.523 0.681

Low 0.585 0.731

High 0.541 0.86

doi:10.1371/journal.pone.0173836.t002
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only contrasts taking place on or after 15 DPP were considered. Visual inspection of decay

curves confirmed this initial assessment and further reduced the number of a priori contrasts

made.

In 2014, concentrations were similar or converged (P> 0.05) at 17, 20, and 34 DPP for

“Naked”+“Fungicide” vs “Low” contrasts for the respective root, seed, and shoot tissues, but

not for the “Naked”+“Fungicide” vs “High” contrasts which remained different throughout

the sampling period (Table 5), with the exception of the shoot region at 34 DPP. In 2015, this

did not occur for the root or shoot region until 47 DPP for either contrast set. It is possible

Fig 5. Values of μg clothianidin per g of plant tissue with standard error bars. The 2014 data are represented by graphs (a), (c), and (e),

and 2015 data by graphs (b), (d), and (f). The first 20 days post planting (DPP) are shown. Concentrations as predicted by the first order

exponential decay equation are represented by a dotted red line and solid black line for the respective 0.25 and 1.25 mg /clothianidin application

rates.

doi:10.1371/journal.pone.0173836.g005
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that concentrations converged at an earlier period however freezer malfunction resulted in the

loss of 33 DPP samples.

To compare pest phenology to concentration data, the shoot region was considered pro-

tected until 34 DPP regardless of CLO application rate and treated seed was considered pro-

tected for the entirety of the seed recovery period (up to 20 DPP in both years) despite

concentration convergence at 17 DPP in the “Naked”+“Fungicide” vs “Low” contrasts

(Table 5). The root region was considered protected up to 34 and 47 DPP for the respective

“Low” and “High” treatment rates. Protection was considered to last up to 34 DPP for the

“Low” treatment rate as a compromise between 2014 and 2015 data. Root protection was first

lost at 17 DPP in 2014 but was still provided at 19 DPP in 2015. As a freezer malfunction

resulted in the loss of 33 DPP samples in 2015, the next possible sampling date was 47 DPP in

which protection had already been lost. It is unknown whether protection had been lost by 33

DPP in 2015, however by selecting 34 DPP as the date of protection loss, we balance the possi-

bility of underestimating the protection window based on 2014 data and overestimating the

protection window based on 2015 data.

Table 3. F-values and estimated degrees of freedom (df) for the multivariate repeated-measures ANOVA model describing in-plant concentrations

of clothianidin over the sampling period in 2014 and 2015 for the three plant regions (Root, Seed, Shoot).

Region 2014 Factor df F-value 2015 Factor df F-value

Root Time 7,3 418.22*** Time 8,1 385.83*

Treatment*Time 21,9.17 4.64* Treatment*Time 24,3.50 4.26

Seed Time 6,4 314.37*** Time 6,3 17.07*

Treatment*Time 18,11.80 1.15 Treatment*Time 18,8.97 1.93

Shoot Time 7,3 181.26*** Time 8,1 328.45*

Treatment*Time 21,9.17 2.27 Treatment*Time 24,3.50 1.25

*P < 0.05.

**P < 0.01.

***P < 0.001.

doi:10.1371/journal.pone.0173836.t003

Table 4. Univariate F-values and degrees of freedom (df) generated following the multivariate repeated-measures ANOVA model describing influ-

ence of initial clothianidin seed treatment (Treat) on in-plant concentrations of clothianidin over the course of multiple days post planting (DPP) in

2014 and 2015 and three plant regions (Root, Seed, Shoot).

2014 F-value

Region Factor df 6 DPP 8 DPP 10 DPP 13 DPP 15 DPP 17 DPP 20 DPP 34 DPP

Root Treat 3,9 142.15*** 79.27*** 32.59*** 67.51*** 177.66*** 21.51*** 17.20*** 3.69

Seed Treat 3,9 71.67*** 112*** 63.74*** 84.58*** 143.84*** 52.19*** 24.07***

Shoot Treat 3,9 40.78*** 121.11*** 116.15*** 64.44*** 108.55*** 91.78*** 37.15*** 1.65

2015

Region Factor df 5 DPP 7 DPP 9 DPP 12 DPP 14 DPP 16 DPP 19 DPP 47 DPP 61 DPP

Root Treat 3,8 52.89*** 24.97*** 321.89*** 50.81*** 159.45*** 71.75*** 55.24*** 2.34 2.77

Seed Treat 3,8 209.29*** 429.13*** 1356.72*** 111.42*** 86.15*** 133.09*** 35.03***

Shoot Treat 3,8 429.43*** 79.38*** 229.14*** 37.17*** 101.01*** 93.13*** 85.25*** 1.87 0.19

*P < 0.05.

**P < 0.01.

***P < 0.001.

doi:10.1371/journal.pone.0173836.t004
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Discussion

These results are the first to use field experiments to quantify in-plant concentrations of CLO,

the principal neonicotinoid AI currently used in North American maize production, and dem-

onstrate a rapid reduction in tissue-bound CLO beginning in the days following seed sowing.

An exponential decay equation [53] provides explanatory power in describing the relationship

between CLO concentrations solely as a function of time in the root and shoot region of

treated plants. Given the water solubility of CLO (0.327 g/L at 20˚C [16]), and the low percent

of AI remaining on the seed at the first sampling date, it is likely the removal of CLO from the

seed surface was rapid following seed sowing and followed an exponential decay pattern; our

sampling protocol may have been initiated too late (5 and 6 DPP in 2015 and 2014 respec-

tively) to observe this trend fully. This may explain why the seed region in all treatments had

the lowest R2 values associated with the exponential decay equation (Table 2). Furthermore,

the combination of CLO’s high water solubility and long soil half-life (277–1386 days [27]) is

likely underlying our observations of CLO in untreated plant tissues, either as a result of lateral

movement between plots and/or as a residue from the previous planting season. This is not

unexpected as expression of neonicotinoids in non-target plants has previously been attributed

to subsurface movement [38,39].

These data also provide a potential mechanism to explain a range of field observations from

previously published literature. Numerous studies have reported inconsistent yield benefits of

NSTs in maize, including finding no advantages of the NST approach when compared to

maize seed having no insecticide applied [57–59]. Similarly, our study found no statistical dif-

ferences in stand count, root ratings, or yield between treated and untreated seed in both

years. While the presence of root feeding pests was documented in both years as evidenced by

root ratings (Table 1), economic injury was only observed in the 2015 “Low” and “Fungicide”

Table 5. F-values of a priori contrasts comparing untreated maize seed (Fungicide + Naked) to 0.25 mg clothianidin/kernel (Low) and 1.25 mg

clothianidin/kernel (High) at various days post planting (DPP) for three different plant regions (Root, Seed, Shoot) in 2014 and 2015.

2014 2015

Region Contrast DPP F-value DPP F-value

Root Fungicide+Naked vs Low 15 F1,9 = 38.86*** 19 F1,8 = 49.46***

17 F1,9 = 1.89 47 F1,8 = 5.11

20 F1,9 = 0.66 61 F1,8 = 2.81

Fungicide+Naked vs High 17 F1,9 = 57.59*** 19 F1,8 = 162.78***

20 F1,9 = 47.08*** 47 F1,8 = 4.09

34 F1,9 = 10.13* 61 F1,8 = 1.41

Seed Fungicide+Naked vs Low 17 F1,9 = 18.98** 19 F1,8 = 44.07***

20 F1,9 = 3.97

Fungicide+Naked vs High 17 F1,9 = 155.55*** 19 F1,8 = 87.40***

20 F1,9 = 69.20***

Shoot Fungicide+Naked vs Low 17 F1,9 = 26.69*** 19 F1,8 = 84.97***

20 F1,9 = 8.17* 47 F1,8 = 0.38

34 F1,9 = 0.56

Fungicide+Naked vs High 20 F1,9 = 107.03*** 19 F1,8 = 237.63***

34 F1,9 = 4.47 47 F1,8 = 4.77

*P < 0.05.

**P < 0.01.

***P < 0.001.

doi:10.1371/journal.pone.0173836.t005
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treatments and only if NST cost was assumed to be<$27/ha and<$32.5/ha respectively. In

other words, no economic benefit would be realized if the respective application costs were

>$27/ha and>$32/ha for the “Low” and “Fungicide” treatments. This interaction between

insect damage, crop yield, and insecticide cost is expressed in the following equation [60]:

EIL ¼
C

V � b � K

Where the economic injury level (EIL) is defined as management cost per area (C) over

market value per produce unit (V) multiplied by yield loss per insect (b) and the proportionate

reduction in potential injury (K).

Out of necessity, we assumed a range of insect control costs ($17.5-$55/ha) for C because

the actual cost is not disclosed to growers or available in the published literature. Estimates

range widely from between ~$17.5/ha [61,62] to $37.5/ha [63]). Below, we outline two sets of

calculations that shed light on the potential fit for this pest management approach.

Using a value of K of 1 (i.e. 100% reduction in pest injury) is admittedly unrealistic and

unattainable, but provides a best case option for exploring different scenarios given market val-

ues and insect control costs influence EIL calculation. For example, transposing our observed

2015 damage results and using the recent 5-year high for Indiana maize market values of

$28.46/100 kg in 2012 [47], we would expect economic injury in the 2015 “Naked”, “Low” and

“Fungicide” treatments with respective control costs <$26,<$51, and <$62/ha (Table 1 and

Fig 2). However a more informative approach for growers is to use the 2014–15 average

($14.96/100 kg), which coincides with the 2016 mean market values ($14.87/100 kg [64]) to

calculate the EIL; values are approximately 50% lower than 2012 values resulting in control

costs of $27/ha and $32.5/ha for respective “Low” and “Fungicide” treatments. While the 2012

example demonstrates spending an initial ~$17.50/ha on NST may be justified under high

market prices or high pest pressure, lower market prices (2014–16) limit any additional control

tactics a grower can afford.

The results of previous reports [57–59] and the findings we report here suggest that K is

lower than 1. Comparison of damage in the untreated versus treated plants allows us to esti-

mate K. In 2015, the average root rating for the “Naked” and “Fungicide” treatments was

0.3245 and the “High” was 0.128 leading to an estimated K value of 0.395. Using this value,

none of the tested treatments reached economic injury as the lowest tested treatment cost

($17.50/ha) would require a minimum root rating of 0.53 to reach economic injury levels. A

less efficacious pest management approach effectively raises the economic threshold.

Our economic threshold estimates using these data provide a starting point for discussion,

but the overall benefit of NSTs cannot be fully assessed without knowledge of the actual cost of

NSTs for maize growers. Maize seed without NSTs is increasingly scarce in the current mar-

ketplace [5]. A true “free market” approach to seed availability, including a wide selection of

readily available NST-free maize seed would provide a basis for cost comparison while allow-

ing producers, consultants and researchers to readily make on-farm comparisons and deter-

mine if and when NST costs are justified.

In assessing potential benefits of this approach, we chose to use in-plant CLO concentra-

tions to construct a pest management window for maize plants grown from treated seeds.

Planned contrasts provided a highly conservative estimate of the date after planting at which

the CLO concentration in treated plant tissue was statistically similar to that of untreated plant

tissue. This approach to the development of a pest management window is highly conservative,

in that it assumes that even very low levels of the AI in plant tissue is likely to provide pest

management benefit, a notion that has not been tested empirically in the lab or field. This is

the most parsimonious initial approach for interpreting these data from a pest management
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standpoint because oral LD50 concentration data for NSTs have not been reported for the tar-

get pest insects.

This study also demonstrates that when deploying NSTs, consideration should be given to

pest biology, more specifically to how the pest’s activity window and region of attack overlap

periods where a pest management benefit of NSTs could be expected. In the case of the key

pest of maize, western corn rootworm, the damaging larval stage was active starting at 27 and

28 DPP in 2014 and 2015 respectively (Fig 4). As a priori contrasts suggested CLO STs at the

“High” rootworm rate [11,12] stopped providing protection to the root tissue by 47 DPP, ~20

days of western corn rootworm protection were provided (Table 5). This may be a sufficient

window and insecticide concentration level (from 31.47 μg/g (6 DPP) to 0.02 μg/g (47 DPP)

for “High” root tissue in 2015) to deter or kill neonate western corn rootworm larvae, although

no data exist to support or refute this hypothesis. Alternatively, decay curve analysis shows the

likely root protection window extended to 18.5 and 20 DPP for the respective “Low” and

“High” treatments, ending well before western corn rootworm emergence and presenting a

poor fit with the phenology of this key pest. While it is possible that the ambient AI concentra-

tion in soil around roots is high enough to provide control, this hypothesis has not been tested

experimentally.

A similar result was obtained with white grubs, in which a priori contrasts predicted root

protection for all of the white grub active period at the “High” rate and all but 7 days at the

“Low” rate. However exponential decay analysis estimated root tissue as unprotected for 22.5

and 21 days for “Low” and “High” rates, respectively. The CLO STs failed to provide protection

from western corn rootworm and white grub for the entirety of the pest activity window, but

this is not the case for seedcorn maggot and wireworms where both a priori contrasts sug-

gested CLO STs provided some protection to the seed region for the vast majority of the seed

recovery period (up to 20 DPP). Our data suggest that fields with a history of wireworm, seed-

corn maggot, or white grub, may benefit from the use of NSTs as a seed protectant during the

first 20 DPP as their activity window coincides with the window of highest AI concentration

within plant tissues. The root region protection window is less clear as conservative estimates

indicate 20–21 days of western corn rootworm protection at the “High” rootworm rate and at

least 34–47 days of white grub protection at the “Low” and “High” rates.

Finally, the rapid decrease in concentration of insecticide within plant tissues points to a

broader question for current NST approaches. The NSTs are marketed as a targeted pesticide

delivery system [1], however our findings demonstrate that NSTs may be a highly inefficient

approach to applying active ingredients to plant tissues where insects will ingest them. In sum,

less than 1.5% of the initial seed-applied AI was recovered in whole plant translocations. When

looking at the root tissue alone, a maximum of 0.262% of the initial amount was translocated

(Fig 3), although it is unknown whether these levels are sufficient for pest management. For

reference, a higher percentage of the initial ST amount applied to seeds has been reported as

lost during planting due to abrasion ((0.437%) [65]). The shoot region however translocated a

maximum of 1.18%, a likely result of the high xylem mobility many of the neonicotinoids pos-

sess (Bonmatin et al. 2015). Similar translocation efficacy, under field conditions is expected

for thiamethoxam, the second most widely-used NST in maize, which has a water solubility

value approximately 10-fold higher than that of CLO [20, 66]. These results also contrast with

those of Sur and Stork [23] whose study reported 20% translocation of imidacloprid STs in

maize. The authors mention that their translocation values may be inflated as the study was

conducted in a greenhouse, reducing impacts of UV photolysis and weather conditions, and

that the amount of soil in the plant boxes compared to the root mass exaggerated imidacloprid

uptake. This is likely a key limitation of that study and may explain why our recovery from a

field experiment was much lower; AI that would be lost to the water table in the field could
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remain in greenhouse enclosures and be available for uptake by plants throughout the season

in this relatively closed system.

Determining the environmental fate of the remaining ca. 98% of active ingredient used in

NST is an area primed for further research. The intrinsic characteristics of CLO, thia-

methoxam and imidacloprid, and a growing body of literature reporting neonicotinoids in

water lends support to the interpretation that the remainder of the ST is rapidly lost to the

environment in ground and surface water [31–33, 35, 36]. The high water solubilities of the

compounds most commonly used in NST applications make it unlikely that they will reside

near the target plant’s relatively limited rhizosphere long enough to be absorbed by the plant

once they are not on the seed. This may explain why samples in 2015 generally had a higher %

AI translocated (Fig 4) as cumulative rainfall in 2015 was 2.66-fold less than over the same 20

DPP period in 2014. This may also explain why the concentrations reported in our study depart

from those of Myresiotis et al. [22]. While plants were regularly irrigated in the Myresiotis et al.

[22] study, the authors mention they made sure the entire volume of water remained within the

rhizosphere soil in an effort to avoid leaching. Using seed treated with 0.1 mg thiamethoxam

per kernel, Myresiotis et al. [22] found shoot concentrations of 0.62 and 0.13 μg thiamethoxam/

g at 21 and 36 DPP respectively. Using the “Low” rate of 0.25 mg CLO per kernel, our study

found in plant concentrations of 0.086 and 0.007 μg CLO/g at 20 and 34 DPP respectively in

2014. Despite the higher initial application rate of our seed, the Myresiotis et al. [22] study had

overall larger AI concentrations in shoot tissue which is likely due to differences in experimental

design. AI that was lost to leaching in our field study would have been preserved in a potted

plant study with constrained irrigation.

Conclusions

While the highest in-plant neonicotinoid concentrations reported from this research may pro-

vide some control of early season root and seed pests, the relatively brief window of high AI

concentrations poorly coincides with the phenology of the key maize pest in the USA. This

coupled with the sporadic occurrence of economic infestations [17] of secondary pests indi-

cates that most US maize producers are unlikely to realize benefits from the NST approach.

Furthermore, the widespread prophylactic application of NSTs [5] and their high water solu-

bility, coupled with the limited translocation efficiency reported in this study, provide a mech-

anism to explain increasing detections of NST compounds in non-target lands and waterways

[31–33, 35,36].
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