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Simple Summary: Today, the monitoring and analysis of honey bee losses in more than 36 countries is
carried out, in particular, through citizen science and the annual participation of volunteer beekeepers
in the “COLOSS” (honey bee research non-governmental association) questionnaire on winter colony
losses. Greece’s first participation in the COLOSS survey since 2018 has offered valuable analyzed
data, from almost all regions, in detail for the first time in this study. In line with EU recommendations,
our four-year monitoring showed a recent transition in the local beekeeping sector towards more
natural practices concomitant with a decrease in overwintering colony losses. Among the different
factors that influenced the winter colony losses, our study showed that the avoidance of agricultural
habitats for honey production, together with the gradual substitution of chemical acaricides by
more natural substances, are two major factors that could have improved colony survival. The
current analysis can provide beekeepers with the relevant means to compare with their own hives’
performance. It could also serve as a basis for future more in-depth analyses of Greek winter losses
and highlight beekeeping trends for the development of a successful organic transition.

Abstract: The honey bee is one of the most important pollinators with a close relationship to humans.
The questionnaire from the non-governmental association “COLOSS”, answered by beekeepers
around the world, is a valuable tool for monitoring and analyzing factors involved in overwintering
losses, as well as for understanding the evolution of the beekeeping sector over the years. Between
2018–2021, Greece’s participation in this survey involved collecting data from 752 beekeepers and
81,903 hives, from almost the whole country, with a stable balance between professional/non-
professional participants and hives, providing a solid representation of the beekeeping practices and
winter losses during this period. The results of this study identify a transition towards more natural
beekeeping practices concomitant with a significant decrease in winter losses (average losses in 2018:
22.3% and 2019: 24%, dropped in 2020: 14.4% and 2021: 15.3%). Indeed, some factors, such as the
increased use of natural landscapes for honey production (from 66.7% usage in 2018 to 76.3% in 2021)
and the reduction in the exclusive use of synthetic acaricides (from 24.7% usage in 2018 to 6.7% in
2021) seem to have a significant impact on hive survival. Although these correlations remain to be
confirmed experimentally, our study shows that Greek beekeepers follow recommendations and
policies toward more sustainable practices. In the future, these trends could be further analyzed and
integrated into training programs to strengthen the cooperation and information exchange between
citizens and science.
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1. Introduction

The honey bee is one of the most important pollinating organisms of both wild and
agricultural plants [1–7], being essential for ecosystems’ health [6,8] and food security [2,7,9].
At the same time, it is the only pollinator with such a close relationship to humans. It is
valuable for the livelihood of beekeepers [10–13], the growth of the countryside [14], and
the overall global economy [2,7,15–17]. Since the early 2000s, increased honey bee colony
losses have been observed in individual parts of the world [18–25] and universally [1–3].
Through the years, elevated loss rates have been attributed to different biotic and abiotic
factors [18,26–28], such as pests and diseases [29–34] or monoculture and quality of diet [35].
In addition, the synergistic effect of many pressures is also considered to add up to an even
more significant threat, compared to each individual stressor [36].

In an effort to address bee issues, as well as the compartmentation of existing research,
in 2008, the international scientific research association “COLOSS” (Prevention of COlony
LOSSes) was founded, to connect honey bee experts, reinforce their scientific collabora-
tion and improve the well-being of honey bees on a global scale [18,37]. One of its core
activities since the very start [38] has been the Citizen Science “Colony Losses Monitoring”
project [39], which is currently active in many countries from Europe and the rest of the
world [40–42]. The objective of this group effort is to collect and report internationally
comparable data [43] concerning colony mortality during winter—the most critical season
for colony losses for most European countries [44]. This is achieved through a standard-
ized questionnaire and specific research protocol [45] that facilitate comparison between
different countries, in order to identify factors with positive or negative effects on colony
survival and reassess existing beekeeping practices to prevent future losses [46]. Previous
analysis of COLOSS questionnaires, both at multi-country [40–42,44,47–49] and regional
level [50–54], have set a basis for reference loss rates while investigating a combination of
stressors and hive-management factors.

In Greece, only two reports dealt with winter losses between 2006–2008 and 2012–2013,
but offer almost no information on beekeeping environment and practices [31,55]. However,
no other record of winter losses including environmental or handling parameters was found,
until the country’s first participation in the COLOSS survey in 2018 [42]. Thus, this paper
aims to summarize the results of four concurrent years (2018–2021) based on the COLOSS
survey, to analyze the latest beekeeping tendencies and examine the possible correlation
between the colonies’ environment, beekeeping practices, and winter losses, specifically for
Greece.

2. Materials and Methods
2.1. Data Collection

Global, standardized beekeeper questionnaires were translated into Greek, according
to each year’s COLOSS template and requirements. Necessary adjustments to selected
questions were made, following the standard COLOSS methodology [45]. Questionnaires
in Greek (Supplementary File S1) were printed in paper form and published through
Limesurvey’s platform (made available by COLOSS to all participating countries), during
the spring of 2018–2021. An open call for beekeepers to participate voluntarily was made
through our official newsletter, social media, phone communication with local beekeep-
ing centers, and in person. A sample of 752 beekeepers was obtained directly through
Limesurvey and paper-submitted surveys, which were then transferred to Limesurvey by
the national monitoring team’s members. Access to the surveys was closed every July and
.csv files were exported directly from Limesurvey.

2.2. Data Cleaning

Files in .csv format exported from Limesurvey were merged in a collective .csv file.
Variables relevant to Greece only were coded in a similar pattern. All beekeepers’ personal
data, date, time, and blanks were removed or filled with N/A. Regarding the question
“number of apiaries”, a large number of beekeepers reported equal or more apiaries than
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the original colonies, or too many apiaries for the given colonies, indicating that they
probably did not understand well the meaning of the question. Since none of these answers
could be cross-validated, all data related to the apiaries were removed. However, beekeeper
responses with problems only in this question were kept for further analysis of the rest
of the variables. Only the beekeepers with more apiaries than colonies were excluded
entirely, as they were considered not to understand the basic language of the survey and
thus their answers were unreliable. Answers with total colonies before winter equal to
N/A or zero or less than the total colony losses were also excluded. Colony migration
distances, differently reported between 2019–2021, were modified to facilitate comparison.
The kilometer (km) range per transportation of 2019–2020 was replaced by the km mean,
and the total transportation’ km of 2021 were divided by the migration times. Migration
distances of 2018 (the first year of Greek participation) were replaced with N/A as they did
not include a number or distance, possibly due to problems with the Greek translation at
that time. Specific Greek questions related to acaricide treatments were merged under a
compatible category from the existing global variables. Answers about sugar supplement
feeding reporting more than 25 kg of dry sugar per hive were also replaced with N/A,
as they were not deemed realistic and probably understood by the beekeepers as kg per
apiary. Greek characters or free-form text were substituted with Latin, numeric, or N/A
answers depending on their translation, sometimes one by one.

2.3. Data Analysis
2.3.1. Regional Calculations

To maintain anonymity, regions with fewer than three participants in a particular year
were excluded from the year’s regional calculations (Supplementary Tables S1 and S2) and
maps (Figures 1c and 2b). Similarly, regions with fewer than five participants in the total
four-year period were excluded from the total regional calculations and maps. Any data
excluded for anonymity reasons were used for the overall period calculations and in the
comprehensive national analysis. Resulting maps were created using the Datawrapper tool,
based on R .csv exports.
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Figure 1. Constant distribution of the types of participants and monitored colonies across the years all
over Greece: (a) stack bar plots showing the proportion of participants and; (b) monitored colonies in
relation to their socio-professional situation (professional beekeepers > 150 hives); (c) map coverage
of total participation across four years.
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Figure 2. Main reasons for the loss of colonies and identification of regions at risk in Greece: (a) bar
plots showing percentage of loss per main category (upper panel) and per sub-category (lower panel)
per year; (b) map showing the risk of losses over the four years (the map shows beekeeper answers
only for regions with a minimum of five answers over the four years). The statistical significance of
the changes observed within the four years was performed using a generalized linear model with a
negative binomial distribution. Multiple comparisons were performed using Tukey tests. Letters on
top of each bar indicate the significance of the comparisons. When two bars share the same letter,
their differences are not significant.

2.3.2. Losses

A loss rate was calculated for each beekeeper as the sum of lost colonies (due to queen
problems + natural disaster + worker bee deaths) divided by the colonies before winter in a
given sample [43]. At each reported loss, a 95% confidence interval was calculated. The
risk of loss for each region was calculated by its loss rate divided by the loss rate of the
whole country, so that if the risk is >1, then there is a higher risk of losses, while if the risk
is <1, then the risk is lower compared with the overall country losses.

2.3.3. Categorization

The criteria for declaring a beekeeper as professional was the possession of at least
150 productive colonies before winter. Accordingly, beekeepers with fewer than 150 pro-
ductive colonies before winter were considered non-professionals. Different forage plants
were grouped into two categories. Orchard trees, oil seed rape, maize, sunflower, and
cotton were grouped together as agricultural forage sources, and pines/conifers, thyme,
heather, and cistus were grouped as natural forage sources. For each beekeeper, a score of
+1 was given to each visit declared to a natural habitat (heather, pine or conifers, thyme, and
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cistus) and −1 to each visit to an agricultural habitat (orchards, OSR, maize, sunflowers,
cotton). A positive score indicated a tendency for the beekeeper to choose natural habitats.

The different varroa treatment methods were grouped into four major categories based
on previous research categorization [56]: The “Biotechnical method” includes beekeep-
ers exclusively using hive manipulation techniques without adding substances such as
drone removal, hyperthermia, or other biotechnical methods. The “Organic acid” cat-
egory includes beekeepers treating hives only with natural substances such as formic
acid (short- and long-term exposure), lactic acid, oxalic acid (by strip, sublimation, or
combined with glycerin), or other commercial mixtures (e.g., Hiveclean®, Bienenwohl®,
Varromed®) and Thymol (e.g., Apiguard®, ApilifeVar®, Thymovar®). The “Synthetic
acaricide” category was assigned to beekeepers using only chemical treatments such as
Tau-Fluvalinate (e.g., Apistan®), Flumethrin (e.g., Bayvarol®, Polyvar®), Amitraz (by strips,
e.g., Apivar ®, Apitraz®, or by fumigation or aerosol), Coumaphos (by strip, e.g., Perizin®

or strips, e.g., Checkmite+®) or any other chemical substances. The “Other method” was
used to label beekeepers reporting other, unspecified methods for varroa control. Finally,
the category “Multiple” was created to represent beekeepers using a combination of at least
2 of the previous categories.

2.3.4. Statistics

All statistical analyses were performed with the software R v4.1.3. Unless explicitly
stated in the text, the description of the variability of the data over the four years was
performed by providing the standard deviations of the means for each variable studied
and/or using plots.

To compare the changes in overwinter losses within the four years and across the
main and the sub-categories, we used a generalized linear model with a negative binomial
distribution (to account for the overdispersion and an over-representation of zero) and
adding the total number of colonies before winter as “offset” (MASS R-package). The
comparison of the estimated marginal means was performed with Tukey’s adjustment
method (multcomp R-package).

To explore if the type of acaricide treatment and beekeeping practice affected the
likelihood of colony loss, the proportion of lost colonies compared to the proportion of
colonies not lost was examined using a generalized linear model with a quasibinomial
distribution to account for the overdispersion (stats R-package). We first assigned each
beekeeper a “natural score” representing environmental habits, according to which a higher
score would indicate a greater beekeeper preference for using natural areas. In the first
model, we tested the influence of the natural score individually and in interaction with the
socio-professional category of the beekeeper. In the second model, we tested the influence
of the acaricide treatment individually and in interaction with the declarations of the
type of beekeeping practiced. The explanatory variables were: Model 01: the natural
score (“−4” score was excluded due to low sample size) and its interaction with the
professional status of the beekeeper. Model 02: the type of acaricide treatments (“organic
acids”, “synthetic acaricide” and “multiple”) and its interaction with the declaration of the
beekeeper (“organic” and “conventional”). The “biotechnical methods” were excluded due
to the low sample size.

3. Results
3.1. Constant Distribution of the Types of Respondents across the Years and All over Greece

During the four years of participation, 752 valid surveys were collected, representing
81,903 colonies (Table 1). For every year, more than 3/4 of the total participants were
non-professionals (Figure 1a), while at the same time 2/3 of the total colonies monitored
belonged to professionals (Figure 1b). Although a constant decrease in participation was
observed across the years, the ratio between professionals and non-professionals was
always maintained. On average, a professional beekeeper had five times more hives than
a non-professional (288 ± 187, versus 51 ± 36). Data from 50 out of 52 regions of Greece
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were obtained through the survey (Figure 1c, Supplementary Table S1), providing a good
representation of the beekeeping sector all over the country.

Table 1. Summary of participation and hive loss rate.

Year Type Number
ofParticipants Number of Hives Mean Loss Rate %

(95% CI)

2018
Non-professional

Professional
Total

201
67

268

9326
20,964
30,290

23.9% (19.8–28.0)
17.6% (12.0–23.1)
22.3% (19.0–25.7)

2019
Non-professional

Professional
Total

171
37

208

8562
11,820
20,382

25.7% (22–29.3)
16.1% (10.1–22.0)
24% (20.8–27.2)

2020
Non-professional

Professional
Total

106
44

150

6283
11,943
18,226

14.8% (11.5–18.0)
13.4% (9.1–17.6)

14.4% (11.8–19.9)

2021
Non-professional

Professional
Total

91
35

126

5076
7929

13,005

16.3% (12.3–20.3)
12.8% (8.7–17.0)

15.3% (12.2–18.4)

All YEARS
Non-professional 569 29,247 21.5% (19.5–23.6)

Professional 183 52,656 15.3% (12.7–18.0)
All YEARS Total 752 81,903 20.0% (18.4–21.7)

3.2. Main Reasons for the Loss of Colonies and Identification of Regions at Risk in Greece

Every winter, about 17% of the country’s total colonies were lost, while the loss rate per
Greek beekeeper was, on average, 20% over the monitoring period (Table 1). The years 2018
and 2019 were the worst years concerning the rates of overwinter losses, with 22.3% and
24% of colonies lost, respectively, with no significant difference (Table 1, 2018 versus 2019:
p = 0.86604), followed by a good period of two years during 2020 and 2021, with 14.4% and
15.3% of colonies lost, respectively, with no significant difference either (2020 versus 2021:
p = 0.99851). However, the drop between these two periods was statistically significant
(2019 versus 2020: p < 0.001). Overall, non-professionals had higher loss rates, calculated at
21.5% (95%CI 19.5–23.6) compared to professionals at 15.3% (95%CI 12.7–18.0). Between
the factors of the annual colony losses, a dead bee population or empty hives were always
the most common cause (57.8% ± 8% of total colonies lost) followed by colonies lost due to
queen problems (33% ± 6.8%). At the same time, natural disasters were not very common,
contributing to an average loss rate of 9.2% ± 2.3%. We also observed that the rates of
colony loss for each main category were not significantly influenced within the period, with
the exception of the rates from the category “natural disaster”, which appeared to be higher
during the years 2018–2019 (Figure 2a, upper panel). Within the sub-categories of dead or
empty hives, the most reported factor of losses across the four years was “dead bees inside
the hive” (31.7% ± 16.5%), followed by “no dead bees inside the hive” (26.1% ± 12.1%)
and “dead workers with food present” (10.6% ± 3.4%). Just a few colonies were lost due to
starvation, “dead workers without food present” (3% ± 0.6%), marking this category as
the rarest one. However, losses due to unknown reasons were 16.9% ± 15.3% on average.
Note that in 2021, the number of hives lost for unknown reasons spiked, reaching 43.8.
However, none of the rate fluctuations observed across the sub-categories of losses were
significant over the four years (Figure 2a, lower panel). Across the four years, the regions
with the highest risk of loss were Chalkidiki, Grebena, Arta, Trikala, and Rethymnon, all in
the north, except one on the island of Crete. The lowest risks were found in Samos, Lesvos,
Chios, Lasithi, Heraklion, Arkadia, and Aetolia-Acarnania, all islands, except the last two,
in Peloponnese (south) and central Greece (Figure 2c).
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3.3. Queen Replacements Reduce Colony Losses

Over the four-year monitoring, the country’s general rate of losses due to queen prob-
lems was 5.6%, which corresponds to the second main reason for hive losses. Beekeepers
reported replacing queens in half of their hives yearly (52.9% ± 22.2%, Figure 3a), meaning
that each hive had a new queen about every two years. Most regions followed the same
pattern of queen replacement (Supplementary Table S2). Previous work has identified that
queen replacement has a direct impact on hive losses [40,41,48]. Therefore, we investigated
whether the loss rate per beekeeper correlated with their respective queen replacement rate.
We found that for both professional and non-professional beekeepers, queen replacement
significantly reduced colony losses (Figure 3b).
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3.4. Increase in Use of Natural Habitats

Beekeepers’ choice for hive wintering environments proved to be highly stable over
the years. Meadows were always the preferred wintering place (38.2% ± 1.5%), followed
by agricultural areas (23.4% ± 0.4%), forests (18.9% ± 3.5%), cities (6.4% ± 3.5%) or other
overwintering places (13.1% ± 1.44%) (Supplementary Table S3). On average, beekeepers
moved their hives about 3.2 ± 1.8 times per year, with professionals migrating slightly more,
in both frequency (4.0 ± 2.2 times versus non-professional 2.9 ± 1.5 times) and distance
(114.8 km ± 110.6 km versus non-professional 94.8 km ± 92.6 km for each migration travel).
Overall, beekeepers used 2/3 of natural habitats (70.4% ± 4.1%) and 1/3 of agricultural
habitats (29.8% ± 4.1%) to produce their honey (Figure 4a). Interestingly, we saw a slight
increase in the use of natural habitats (all categories; 2018: 66.7%, 2019: 73,2%, 2020: 70.2%,
2021: 76.3%), which is mainly explained by the decrease in the use of orchards, especially
by professional beekeepers in the last year (Figure 4a).
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3.5. Decrease in the Exclusive Use of Synthetic Acaricides and Replacement by Combined Treatments

On average, 87.4% ± 8% of beekeepers checked for varroa infestations yearly (not
necessarily quantitatively), while almost all of them (95.2% ± 1.5%) treated against it,
regardless of doing a check (Supplementary Table S4). Over the years, natural treatments
using organic acids such as oxalic and formic acid (see methods) remained relatively stable
(35% ± 4.7%). In contrast, treatments using synthetic acaricides such as Amitraz dropped
(18.9% ± 7.7%, Figure 4b, Supplementary Table S4). Biotechnical methods, which did not
involve treatment, seemed to be used marginally in Greece (1.5% ± 1%). Interestingly, our
data also described that the combination of multiple types of acaricide treatments gained
popularity (43.7% ± 7.2%), which might reflect some adaptation from beekeeper habits
(Figure 4b, Supplementary Table S4).

3.6. Beekeepers Are Shifting toward Organic Beekeeping Practices

On average, across the four years, half of the participants used screened bottom boards
(50.4% ± 2.1%) and insulated hives (47% ± 10%) (Supplementary Table S5). The use
of plastic hives and frames with non-wax foundation both seemed to be more popular
practices over the years (plastic hives: 19.2% ± 7.9%, non-wax foundation: 4.5% ± 1.5%),
but still remained marginal practices amongst beekeepers (Supplementary Table S5). The
country’s average sugar supplementing was 4.3 kg ± 0.8% and slightly increased through
the years (Supplementary Table S5). Finally, our survey analysis shows that more and more
beekeepers declared practicing organic beekeeping (12.6% ± 7.9%) in both professional and
non-professional categories (Figure 4c). Varroa tolerant stock use (which is another way to
manage varroa naturally) was also increased (17.1% ± 7.3%) (Supplementary Table S5).

3.7. The Use of Natural Habitats and the Combination of Multiple Acaricide Treatments Are
Significantly Associated with Reduced Colony Losses

Faced with the increasing trend of organic beekeeping practices from our descriptive
analysis, we explored whether the most relevant factors (increased use of natural habitats
and increased use of combined acaricide treatments) influenced the results of colony losses.
The results of the glm statistical analyses are shown in Table 2. The natural score alone
and its interaction with the professional category significantly contributed to reduced hive
losses (Figure 5a). Finally, the use of multiple types of acaricide treatments showed that
this new habit of beekeepers had a beneficial effect on hive losses. However, the interaction
of this practice with their declarations was not significant (Figure 5b). Taken together, our
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results suggest that Greek beekeepers are transitioning toward a more organic treatment of
their apiaries, and such a transition could benefit colony survival.

Table 2. Results of the generalized linear models, which were performed to test the effect of natural
habitat usage (Model 01) and acaricide treatment (Model 02) on colony losses.

Predictors Estimate Std. Error t Value Pr (>|t|)

Model 01: Loss rate ~ Natural Score + Natural Score: Professional type
(Intercept) 1.44274 0.07035 −20.507 <2 × 1016 ***

Natural Score −0.14913 0.06356 −2.346 0.0193 *
Natural Score: type

Professional −0.13639 0.07385 −1.847 0.0652

Model 02: Loss rate ~ Acaricide treatment + Acaricide treatment: Organic Beekeeper
(Intercept) −2.20059” 0.23146 −9.508 <2 × 1016 ***

Varroa_category organic acid 0.38583” 0.27999 1.378 0.1693
Varroa_category multiple 0.60984 0.25115 2.428 0.0158 *
Varroa_category synthetic

acaricide: OrganicBeek NA NA NA NA

Varroa_category organic acid:
Organic Beekeeper −0.04581 0.27261 −0.168 0.8667

Varroa_category multiple:
Organic Beekeeper −0.54119 0.34488 −1.569 0.117

Bold values indicate significance (0 *** 0.01 * 0.05).
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4. Discussion
4.1. Participation

During the reference period of 2018–2021, data from 752 professional and non-professional
beekeepers were collected, providing information on 81,903 hives in total. To obtain
these, a mixed sampling approach was attempted, using some face-to-face interviews,
internet surveys, and post or email-returned answers, based on the proposed data collection
using COLOSS surveys [45]. The resulting sample, distributed all over the country and
between professionals and non-professionals by a constantly maintained ratio, has provided
an illustration of the country’s winter losses. However, the actual annual number of
participants has been continuously declining since 2019. This is possibly due to the COVID-
19 pandemic and the nationally posed restrictions on colony migrations and gatherings,
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which might have hindered effective communication between beekeeping centers and
beekeepers. Indeed, a recent study on the effect of the COVID-19 pandemic on bee research
validated its negative effect on sample collection [57]. Therefore, compared to the number
of officially registered beekeepers [58,59], our sample represents only 3% of them. Even
though our sample size still allows us to draw some reserved conclusions at a national
level, more information is needed in order to analyze specific regional differences that
are possibly present and can affect the overwintering of colonies. Hopefully, increased
participation in the following years will render the opportunity to make more detailed
observations in both space and time.

4.2. Losses

As this study focuses on winter colony losses, we need to clarify that some losses
during the overwintering period are both considered normal and expected. Nevertheless,
the resulting loss rates of this four-year monitoring revealed elevated losses above the
10% rate that was considered normal for the country [31]. Overall, the country’s average
loss rate was 20%, ranging between 14.4% and 24%. The first two years of the analysis
were characterized by high colony mortality compared to local [31] and international
results [41,42] alike, while in the last two years, a significant decrease in losses was observed,
compared to the initial period. With the exception of the natural disaster, the percentage of
the main loss categories, such as queen problems and dead bee populations or empty hives,
remained significantly stable within the four years. Similarly, the sub-categories of colony
losses (dead colonies with bees inside the hive, dead colonies without dead bees inside the
hive, dead colonies without food, dead with food and dead for unknown reasons) show
some fluctuation but none were significant. Concerning the regional distribution of losses,
the highest rates were observed in the north, with one exception (Chalkidiki, Grevena, Arta,
Trikala, and Rethymnon) and the lowest in island areas and two regions in Peloponnese and
central Greece (Samos, Lesvos, Chios, Lasithi, Heraklion, Arkadia, and Aetolia-Acarnania).
Apart from the overall regional loss rates, no apparent geographic pattern was revealed,
primarily due to insufficient data for year-to-year regional comparisons. The contrasting
loss rates observed in each region in the present study have been a common phenomenon
in previous studies as well [23,31,53,54,60], and apart from the factors examined here,
could be influenced by the regional landscape composition [61–63] or specific weather
conditions [64–67] and their effect on plants or pests’ life cycles [66,68,69].

4.3. Environment and Practices

The preferred environment for colony overwintering remained remarkably stable
through the years, with meadows being selected the most and agricultural areas coming
second, followed by forests, other locations, and lastly cities. On the other hand, the
beekeepers’ selection of the foraging environment presented an increase towards natural
sources, with bees having stable access to plants such as pines, conifers, thyme, heather, and
cistus but no deliberate access to orchards for honey production. Queen replacements were
conducted yearly and in a consistent manner, substituting old queens of half of the hives on
an annual basis. Additionally, almost all participants were in tune with the necessary checks
and treatments for varroa in their colonies. The most notable changes regarding beekeeping
practices were the gradual substitution of synthetic acaricides with natural methods or
substances and the increased declaration of an organic approach, especially in 2021. Such
observations in our analysis have made evident that Greek beekeepers were caught in
a transition to more natural environments and methods. In fact, a general tendency for
organic agriculture and beekeeping has been growing in previous years, globally [70–
78]. Only the increase in plastic hive use, which does not align with organic practices,
contradicts our observed trend, but could be explained by economic reasons. The EU has
already started promoting the transition to organic beekeeping through local authorities
by offering economic support opportunities [79,80]. As shown in previous reports, such
motives, especially in the post-pandemic world economy, have proved efficiently attractive
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to convince beekeepers to make the necessary changes [75–78]. Hence, based on our
findings, we were able to demonstrate such a shift in the beekeeping sector. Although no
intentional selection was made during the survey collection and analysis, here we still hold
a small reservation as to whether younger beekeepers with access to the online form of the
survey are possibly more interested in organic beekeeping practices.

4.4. Practices Effects on Losses

The elevated queen replacement was positively linked with reduced colony losses,
in agreement with previous findings [40,41,48]. Decreased access to agricultural foraging
environments and the substitution of synthetic varroa treatments were also correlated
with a lower loss risk. On the contrary, declarations of organic practice did not influence
winter mortality, as they most probably reflected the beekeepers’ philosophy or intentions
and not the actual conditions of their hives. Through the previous bibliography, we
see that foraging in agricultural environments, instead of natural ones, can negatively
affect winter colony survival [42,48,53]. This can be attributed to the poorer nutrition
obtained from a monoculture diet, compared to a diversity of wild plants [35,48,81], and the
possible exposure to sub-lethal doses of crop chemicals [52,82,83]. Furthermore, synthetic
acaricides have been blamed for building resistance, polluting the hive’s interior, and
causing bee health complications [84,85]. Exposure to chemicals from varroa control
treatments, in-hive residue, and intensified agriculture is also typically found to lead to
more losses [52,82,83,86]. Based on the above, our findings may reinforce the opinion that
queen replacements and a more natural beekeeping approach, in terms of foraging and
varroa control, could be considered in the prevention of colony losses, at least locally. Still,
patience is advised in order to observe the complete substitution of synthetic acaricides, as
different varroa fighting strategies have their advantages and weaknesses [85].

4.5. Future Perspectives

Of course, any observational study like this one has its limitations [87,88], and alone
it should be interpreted with care; supplementary research from hive samples may prove
necessary in some cases to accurately assess the effects of this organic transition. A sure
causative link between fewer winter losses and more natural beekeeping practices may be
established after a controlled experimental study. Consequently, the present effort can only
signify the association between the two. In the meantime, educational opportunities for
organic beekeepers should be promoted, given the recent shift observed in the sector and
the importance of improved beekeeping knowledge for colony survival [89]. Resources
and scientific findings from efforts like the present study could complement these. In fact,
beekeeper training programs could be designed with the integrated annual monitoring
of colonies to reinforce the cooperation and information exchange between citizens and
science, on the way to a better future for bees. Moreover, the investigation of organic
beekeeping possibilities [70,74,90–92], even after the state’s economic support, would also
be beneficial for Greek application in order to encourage the beekeepers’ transition, and to
result in higher quality honey bee products, healthier food systems, increased sustainability
standards [74,78,79] and improved colony health and survival for the benefit of bees and
beekeepers alike.

5. Conclusions

Thanks to Greece’s four-year participation in the COLOSS survey, we were able to
observe that the last two years (2020–2021) were marked by a significant decrease in winter
losses, concurrent with an increase in natural beekeeping practices. In fact, the collected
data outlined a clear image of transitioning to more sustainable and organic beekeeping
practices, in accordance with the EU’s recommendations. While most of the factors that
were analyzed (such as queen replacement, overwintering environment, and beekeeper
migration practices) remained stable over this period, the increased use of natural habitats
for honey production and the gradual substitution of synthetic acaricides were significantly
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associated with a decrease in the winter colony losses. For now, our results can certainly
provide some feedback to previous participants, concerning different practices and average
loss rates, which are helpful for personal comparison.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/insects14020193/s1, Table S1: Summary of participation and risk
of hive losses across the years and regions, Table S2: Summary of queen replacement rates across the
years and regions, Table S3: Summary of the overwintering place across the years, Table S4: Summary
of Acaricide treatment across the years, Table S5: Summary of Beekeeping practices across the years,
File S1: Beekeeper surveys 2018–2021.
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