
May 2016 | Volume 4 | Article 921

Mini Review
published: 11 May 2016

doi: 10.3389/fpubh.2016.00092

Frontiers in Public Health | www.frontiersin.org

Edited by: 
Robin Mesnage,  

King’s College London, UK

Reviewed by: 
Johann G. Zaller,  

University of Natural Resources  
and Life Sciences, Austria  

Anton Safer,  
Heidelberg University, Germany

*Correspondence:
Christopher A. Mullin  

camullin@psu.edu

Specialty section: 
This article was submitted  

to Environmental Health,  
a section of the journal  

Frontiers in Public Health

Received: 20 November 2015
Accepted: 25 April 2016
Published: 11 May 2016

Citation: 
Mullin CA, Fine JD, Reynolds RD and 
Frazier MT (2016) Toxicological Risks 

of Agrochemical Spray Adjuvants: 
Organosilicone Surfactants  

May Not Be Safe.  
Front. Public Health 4:92.  

doi: 10.3389/fpubh.2016.00092

Toxicological Risks of Agrochemical 
Spray Adjuvants: Organosilicone 
Surfactants May not Be Safe
Christopher A. Mullin*, Julia D. Fine, Ryan D. Reynolds and Maryann T. Frazier

Department of Entomology, Center for Pollinator Research, The Pennsylvania State University, University Park, PA, USA

Agrochemical risk assessment that takes into account only pesticide active ingredients 
without the spray adjuvants commonly used in their application will miss important 
toxicity outcomes detrimental to non-target species, including humans. Lack of disclo-
sure of adjuvant and formulation ingredients coupled with a lack of adequate analytical 
methods constrains the assessment of total chemical load on beneficial organisms and 
the environment. Adjuvants generally enhance the pesticidal efficacy and inadvertently 
the non-target effects of the active ingredient. Spray adjuvants are largely assumed to 
be biologically inert and are not registered by the USA EPA, leaving their regulation and 
monitoring to individual states. Organosilicone surfactants are the most potent adjuvants 
and super-penetrants available to growers. Based on the data for agrochemical appli-
cations to almonds from California Department of Pesticide Regulation, there has been 
increasing use of adjuvants, particularly organosilicone surfactants, during bloom when 
two-thirds of USA honey bee colonies are present. Increased tank mixing of these with 
ergosterol biosynthesis inhibitors and other fungicides and with insect growth regulator 
insecticides may be associated with recent USA honey bee declines. This database 
archives every application of a spray tank adjuvant with detail that is unprecedented 
globally. Organosilicone surfactants are good stand alone pesticides, toxic to bees, and 
are also present in drug and personal care products, particularly shampoos, and thus 
represent an important component of the chemical landscape to which pollinators and 
humans are exposed. This mini review is the first to possibly link spray adjuvant use with 
declining health of honey bee populations.

Keywords: adjuvant, agrochemical formulation, organosilicone surfactant, non-target effects, spray tank mix

inTRODUCTiOn

Applications of modern pesticide formulations, particularly in combinations, are often accomplished 
using proprietary spray adjuvants to achieve high efficacy for targeted pests and diseases (1). An 
adjuvant is an additive or supplement used to enhance the performance or aid in the stability of for-
mulations of active ingredients (2). Adjuvant products are formulated combinations of surfactants, 

Abbreviations: AI, active ingredient; CCD, colony collapse disorder; EBI, ergosterol biosynthesis inhibitor; EC, emulsifiable 
concentrate; IGR, insect growth regulator; NMP, N-methyl-2-pyrrolidone; OSSA, organosilicone surfactant adjuvant; ppm, 
part per million.
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penetrant enhancers, activators, spreaders, stickers, cosolvents, 
wetting agents, pH modifiers, defoaming agents, drift retardants, 
nutrients, etc., depending on their proposed utility. Usually, adju-
vants are much less expensive than formulated active ingredients 
and can reduce the active ingredient dose needed by an order or 
more of magnitude (3, 4). Similarly, contemporary drug delivery 
to humans and animals transdermally (5) and orally (6) is often 
mediated via adjuvant technologies that enhance penetration. 
Newer agrochemical technologies include co-formulants such as 
polyethoxylated tallow amines, cosolvents such as N-methyl-2-
pyrrolidone (NMP), and spray adjuvants such as organosilicone 
polyethoxylates (7).

Numerous studies have found that pesticide active ingredients 
elicit very different physiological effects on non-target organisms 
when combined with their co-formulants and tank adjuvants 
(7–9). Despite the widespread assumption that formulation 
ingredients and spray adjuvants are biologically inert, substantial 
evidence suggests that this is often not the case. Indeed, glypho-
sate has weak ecotoxicity and systemic movement without tallow 
amines and other adjuvants (10–12), including its toxicity to 
mammals (13) and human cells (14). Noteworthy is the fact that 
spray tank adjuvants by themselves harm non-target organisms 
from all taxa studied. Adjuvant-dependent toxicities, often more 
than the associated formulations of herbicides and fungicides, 
have been reported for bacteria (15), cyanobacteria (16), algae 
(17), and snails (18). The non-ionic spray adjuvant R-11 syn-
ergized the acute toxicity of the insecticides spinosad (19) and 
imidacloprid (20) on aquatic crustaceans and, in the absence 
of an insecticide, reduced the growth rate of Daphnia pulex at 
relevant field concentrations found after application near aquatic 
systems (21). Aquatic organisms are particularly vulnerable to 
the general ecotoxicity of adjuvant surfactants ranging from 
invertebrates (22, 23) to fish (19, 24, 25) and amphibians (26). 
Terrestrial insects, in turn, have long been shown susceptible 
to insecticide synergisms associated with spray adjuvants (27, 
28). Many of the classical cases of ecotoxicities found with spray 
adjuvants and used with pesticides other than glyphosate are due 
to older surfactant classes, such as nonylphenol polyethoxylates, 
which environmentally degrade to the endocrine disrupting 
nonylphenols (29). It is clear that agrochemical risk assessment 
that takes into account only pesticide active ingredients and 
their formulations in absence of the spray adjuvants commonly 
used in their application (30, 31) will miss important toxicity 
outcomes that may prove detrimental, even to humans. Here, we 
attempt to characterize the scope of spray adjuvant use, especially 
organosilicone surfactants, and explore a possible link between 
their increasing presence in California almonds and the declining 
health of honey bee populations.

SPRAY ADJUvAnTS COnTRiBUTe TO 
THe TOXiC LOAD

Supplemental adjuvants used in tank mixes generally enhance the 
pesticidal efficacy as well as inadvertently the non-target effects of 
the active ingredient after application (7, 14). Dramatic impacts 
of agrochemical formulants on the bee toxicity of pesticide active 

ingredients have been documented (32). Formulations are gener-
ally more toxic than active ingredients, particularly fungicides, by 
up to 26,000-fold based on published literature. The highest oral 
toxicity of three insecticide formulations tested was for Vertimec® 
18 EC that was 8,970 times more toxic to the stingless bee Melipona 
quadrifasciata and 709 times more toxic to the honey bee than 
the topically applied active ingredient abamectin in acetone (33). 
However, the largest documented formulation compared to active 
ingredient differences in bee toxicity have been with the least 
toxic pesticides, particularly fungicides. Among the 300 pesticide 
formulations tested for oral toxicity to adult honey bee in China, 
a 25% EC formulation of the fungicide tebuconazole was equally 
toxic to the most bee-toxic insecticide known, emamectin benzo-
ate (LD50 = 0.0035 μg/bee), whereas a 5% suspension concentrate 
of tebuconazole was > 25,000 times less toxic (34). This product-
dependent range in toxicity is presumably determined by the 
undisclosed fungicide co-formulants. While technical glyphosate 
has virtually no toxicity for honey bees, common formulations 
such as WeatherMAX® do (35). Commercial formulations of 
fumagillin acid used to control Nosema and other microsporid-
ian fungal diseases in honey bees and mammals, respectively, are 
actually salts of the base dicyclohexylamine. This co-formulant is 
five times more toxic and persistent than the active ingredient to 
rodents and other organisms, serving as a sensitive bioindicator 
of fumagillin pollution (36). Most studies documenting pesticide 
effects on honey bees are performed without the formulation or 
other relevant spray adjuvant components used when applying 
the active ingredient, most often due to lack of such required tests 
for product registration (7).

Less potent bee toxicities are usually found when spray adju-
vants are tested alone or relative to the pesticide formulations 
used in tank combinations. About one-third of non-ionic, orga-
nosilicone and other surfactant spray adjuvants at up to a 0.2% 
aqueous solution have been shown to deter or kill honey bees 
(37–39). Exposure to the nonylphenol polyethoxylate adjuvant 
N-90 by itself at field rates impaired nest recognition behavior 
of two managed solitary bees, Osmia lignaria and Megachile 
rotundata (40). While the organosilicone adjuvant Break-Thru® 
fed to nurse bees at 200  ppm with or without 400  ppm of the 
fungicide Pristine® did not impact honey bee queen development 
or survival (41), toxic interaction of the co-occurring insect 
growth regulator (IGR) dimilin with this adjuvant is likely [cf., 
Ref. (42)]. Higher toxicities were found when honey bees are fed 
related commercial organosilicone surfactants in 50% sucrose 
with oral LC50s around 10 ppm (7). A discontinued agrochemical 
surfactant perfluorooctylsulfonic acid is highly and orally toxic to 
Bombus terrestris (43). The penetration enhancing solvent NMP 
commonly present in agrochemical formulations is a dietary 
toxicant for honey bee larvae at 100 ppm (44).

Organosilicone surfactants are particularly potent as super-
penetrants, super-spreaders, and probable ecotoxicants (7). They 
are used worldwide at up to 1% (10,000 ppm) of the spray tank 
mix, while other adjuvant classes require higher amounts up to 
5% of the spray tank mix (3, 32). All organosilicone surfactant 
adjuvants (OSSA) tested (Dyne-Amic®, Syl-Tac®, Sylgard 309®, 
and Silwet L-77®) impaired honey bee olfactory learning much 
more than other non-ionic adjuvants (Activator 90®, R-11®, and 
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Induce®), while the crop oil concentrates (Penetrator®, Agri-Dex®, 
and Crop Oil Concentrate®) were inactive at 20 μg per bee (45). 
The greater surfactancy of organosilicones over other non-ionic 
adjuvants and crop oil concentrates can drive the stomatal uptake 
of large bacterial-sized mineral particles (46) and Agrobacterium 
transformation of grape plantlets (47), and thus may aid move-
ment of pathogens into bee tissues.

SPRAY ADJUvAnT USe DURinG 
POLLinATiOn OF CALiFORniA ALMOnDS

Pollination of California almonds during February and March 
is the single largest pollination event in the world. Over 60% 
(1.5 million) of USA honey bee colonies are transported to 
California each year to pollinate the crop. A workshop convened 
to address reduced overwinter survivorship of commercial honey 
bee colonies used in almond pollination since the 2006 onset of 
colony collapse disorder (CCD) judged neonicotinoids unlikely 
to be a sole factor and Varroa mites plus viruses to be a probable 
cause (48). However, fungicides, herbicides, and spray adjuvants 
were not evaluated. Recent surveys of migratory beekeepers who 
pollinate almonds do not self-report overwintering losses greater 
than the majority of non-migratory beekeepers, although their 
summer colony losses tend to be higher (49). Better manage-
ment practices employed by migratory beekeepers who pollinate 
almonds may explain their lower winter losses in comparison 
with sideline or backyard beekeepers (50). Nevertheless, it has 
been surmised by beekeepers and documented by researchers 
that decreasing honey bee health issues are initiated in almonds, 
a winter/early spring pollinated crop, and then progressed over 
the course of the year as colonies are employed to pollinate other 
crops including apples, blueberries, alfalfa, cotton, pumpkin, 
cantaloupe, etc. Although the rates of foraging honey bees were 
not reduced over time during almond pollination in contrast to 
those pollinating cotton and alfalfa, there was no corresponding 
increase in foraging population though a significant increase in 
colony size occurred (51). Some of the highest pesticide residues, 
especially fungicides, were found on almonds, which represents a 
notable pesticide exposure risk and ranked fifth in hazard among 
the eight crops assessed (51). Ironically, increasing fungicide load 
in pollen has been associated with increased probability of fungal 
Nosema infection in exposed bees (52).

California law defines adjuvants packaged and sold sepa-
rately as pesticide products that require registration (53). Every 
application of a spray tank adjuvant is reported with detail that 
is unprecedented globally. California almond exposes most USA 
honey bees to highly documented pesticide and adjuvant appli-
cations and is an unique crop to assess all other agrochemical 
inputs in the absence of neonicotinoids, presently considered to 
be the primary pesticide factor associated with pollinator decline 
(54). There are no substantial applications of neonicotinoids to 
this monoculture (55), particularly when honey bees are present, 
and almond pollen and nectar tend to be the sole food source 
unless supplemental sugar feeding is employed (52). Pesticide 
usage information for California has been archived since 1990 
in the pesticide use reporting (PUR) database maintained by the 

California Department of Pesticide Regulations (55). The great 
utility of this data for assessing environmental risks of spatial and 
temporal pesticide use in California almonds to aquatic organ-
isms and earthworms has been demonstrated (56). However, our 
study is the first to include spray adjuvants as potentially toxic 
agrochemical inputs in risk evaluation.

We analyzed annual trends in applications of tank adjuvants 
and associated formulated products of active ingredients during 
almond pollination (February and March). January applications 
were also included since their foliar residues may pose toxicity 
risks for newly arriving bee colonies. Over 3.3 million records 
for almond applications were downloaded from PUR (55) and 
sorted for January to March of 2001–2013 using Microsoft Excel 
(Mac 2011). Only synthetic pesticides were analyzed for trends, 
thereby excluding bulky applications of older natural products 
and biologicals, such as sulfur, petroleum and mineral oils, copper 
salts, and microbials, since CCD was first noted in 2006, decades 
after major regular inputs of these natural pesticides were initi-
ated. While overall statewide synthetic fungicide and insecticide 
use on almonds has not increased over this evaluation period, 
applications of herbicides and spray adjuvants, the latter includ-
ing nutrient and buffer supplements, have doubled (Figure  1). 
Yearly application rates were normalized to total almond bearing 
acres, which increased from 530,000 in 2001 to 850,000 acres in 
2013 (57), indicating that the total synthetic pesticide load has 
increased on almonds since the onset of CCD (Figure 1). Because 
herbicide applications are generally made to the understory and 
not to the flowering canopy where pollinator exposure is likely, 
we focused on actual tank adjuvant and pesticide mixes that may 
provide direct exposure risks for bees. Among adjuvant classes, 
the organosilicone surfactants pose the greatest toxicity risks for 
honey bees (7).

We then conducted a detailed analysis of temporal trends in 
organosilicone applications for Stanislaus Co., a major almond 
producing county in California (57), which had the largest 
number of pesticide applications over our evaluation period. 
PUR records (55) were sorted by date, county/meridian/town-
ship/range/section (COMTRS) location, and amount of treated 
almond acres. Co-occurring and synonymous records were 
assumed to represent combined pesticide and adjuvant products 
within the same tank application mix. Based on this premise, 
most of the spray combinations comprised, in addition to one 
or more pesticide formulations, at least one tank adjuvant. 
Focused assessment was then made out of the total number and 
percentages of applications containing an OSSA, which included 
45 products (Table S1 in Supplementary Material) dominated by 
Dyne-Amic®, Syl-Tac®, Sylgard 309®, RNA Si 100®, First Choice 
Break-Thru®, Freeway®, Kinetic®, Multi-Spred®, Widespread 
Max®, and Silwet L-77®. Similar combinations of products were 
assigned unique tank mix codes and resorted. Almost 10,000 
pesticide applications on almonds in Stanislaus Co. contained an 
OSSA over the years evaluated, each on average to 40 acres. The 
greatest increase in major agrochemical inputs observed before 
and after onset of CCD in 2006 was the tripling of total pesticide 
applications containing an OSSA from 587 in January–March 
2001 to 1,781 in January–March 2006 (Figure  2A). Greater 
than 80% of these applications contained fungicides, followed 

http://www.frontiersin.org/Public_Health
http://www.frontiersin.org
http://www.frontiersin.org/Public_Health/archive


FiGURe 1 | Total pounds of synthetic pesticides by class applied per acre of California almonds during January to March of 2001 through 2013. Yearly 
total almond bearing acres were from the CA Department of Food and Agriculture (57).

4

Mullin et al. Adjuvants as Non-Target Poisons

Frontiers in Public Health | www.frontiersin.org May 2016 | Volume 4 | Article 92

by 10% insecticides, and 5% herbicides. Ergosterol biosynthesis 
inhibitor (EBI) fungicides and IGR insecticides were greatly 
increased, whereas herbicide and other insecticide applications 
were fairly static across this period (Figures 2A,B). Pristine® (a 
combination of boscalid and pyraclostrobin), chlorothalonil, and 
EBIs (propiconazole  >  myclobutanil  >  fenbuconazole  >  met-
conazole > difenoconazole) dominated the increasing trends in 
fungicide use at the onset of CCD (Figure 2B). The IGRs (dif-
lubenzuron > methoxyfenozide > pyriproxyfen > tebufenozide) 
displayed the greatest increases among insecticides in spray tank 
mixes containing OSSA during the onset and continuation of 
CCD (Figure  2B). Concomitantly, greatest decreasing tenden-
cies in almond pesticide applications were for other fungicides 
(cyprodinil, iprodione, and azoxystrobin) and the older EBI 
myclobutanil, while inputs of herbicides (primarily glyphosate, 
oxyfluorfen, and paraquat) with OSSA did not change mark-
edly. Based on the CDPR data for agrochemical applications to 
California almonds during pollination, increasing adjuvant use, 

particularly the OSSAs, in tank mixes with fungicides, including 
EBIs, Pristine®, and chlorothalonil, and with IGR insecticides 
may be associated with recent USA honey bee declines.

ORGAnOSiLiCOneS: THe MOST 
POweRFUL SURFACTAnTS

Organosilicone surfactants are the most potent adjuvants and 
super-penetrants available to growers (58, 59). These polyeth-
oxylates and those containing the nonyl- and octylphenols are 
widely used as non-ionic surfactants in spray adjuvants or addi-
tives in agrochemical formulations applied during bloom when 
bees are foraging. Organosiloxane surfactants were detected in 
all wax samples and 60% of pollen samples, although absent 
from honey (60). Their general wide occurrence as residues in 
beehive samples is noteworthy since spray adjuvants are not 
presently regulated by the EPA (61). Nonylphenol more than 
organosiloxane and octylphenol polyethoxylates were found in 
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wax samples, while pollen and particularly honey residues were 
lower (62). Major commercial spray tank adjuvants are blends of 
organosilicone, nonylphenol, and octylphenol polyethoxylates, 
making it more difficult to associate environment residues with 
any specific product (63). Nevertheless, sample levels of the more 
abundant nonylphenol polyethoxylate residues may be used as 
a risk predictor for pesticide exposure because of their frequent 
coincidence in tank mixes of formulations and adjuvants (62). 
Spray tank adjuvants containing these polyethoxylates greatly 
influence pesticide fate (64) in pollinator or other environments, 
generally increasing the residue levels, of particularly fungicides 
(65) and herbicides (66), available to expose pollinators and other 
non-target species. The impact of OSSA sprays on the frequent 
incidence of neonicotinoid residues in bee environments (67) 
and their often associated roles in pollinator decline (68) may 
be great since the highest imidacloprid residue ever reported in 
pollen (7.4 ppm) was after use of Dyne-Amic® on citrus [(69), 
Appendix E].

Even at 10  ppm, OSSAs are good, stand-alone insecticides 
and miticides (7, 70), and can be more toxic to beneficial insects 
than the active ingredient used to control the associated pest 
(71). Silwet L-77® and Kinetic® are known to synergize the 
neonicotinoid imidacloprid used to control the psyllid vector of 
citrus greening disease (72). Yearly use of these potent adjuvants 
continues to increase, with an estimated annual global produc-
tion of 1.3 billion pounds of OSSAs in 2008 among 10 billion 
pounds of all organosilicones (73). This is 30 times greater than 
the highest estimated global annual imidacloprid use of 44 mil-
lion pounds (74). Silwet L-77® was the most potent endocrine 
disruptor among surfactants tested in a screen of 1,814 chemicals, 

with composite scores that placed it in the top 38 of the 465 
endocrine disruptors found [(75), supplemental data], much 
more active than polyoxyethylene(10)nonylphenyl ether. All 
six neonicotinoids, including imidacloprid, were inactive in the 
entire battery of endocrine tests used. Organosilicone surfactants 
are also present in drug and personal care products, particularly 
shampoos (76), and thus represent an important component 
of the chemical landscape to which bees (32) and humans (77) 
are exposed. These widely used super surfactants readily move 
across membranes, become systemic in plants and animals, and 
can ultimately degrade to silica (78) causing silicosis in sensitive 
tissues of exposed organisms.

ARe ORGAnOSiLiCOne SURFACTAnTS 
CAUSinG HARM AnD 
UnDeRReGULATeD?

Organosilicone surfactants are the “gold” standard for effecting 
solution of complex mixtures of agrochemical components of 
wide-ranging polarites in the spray tank. Hundreds of thousands 
of pounds of organosilicone adjuvants are applied every year on 
almonds in California alone (7, 45), both during and subsequent 
to bloom when bee pollinators are present. The high incidence 
of OSSAs in USA beehives and their ability to impair adult 
learning and be toxic to honey bees at all stages of development 
points to their great potential to harm bees and other non-target 
species, and yet, they are typically not even considered in the 
risk assessment process. It is clear that relevant pesticide risk 
assessment for pollinators and other non-target species cannot be 
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addressed solely by evaluating the active ingredients without the 
 concomitant formulation ingredients and spray tank adjuvants. 
Lack of risk mitigation on spray tank adjuvants presently allows 
major OSSA products such as Break-Thru®, Kinetic®, RNA Si 
100®, Silwet Eco Spreader®, Syl-Coat®, and Widespread® to be 
used on any “organic” crop under a certified Organic Materials 
Review Institute (OMRI) label (79).

Spray adjuvants are largely assumed to be biologically inert 
and are not registered by EPA at the federal level in the USA 
(7, 55). Registration and monitoring of adjuvant use patterns are 
regulated at the state level in the USA, and most states do not 
participate in this process. To the best of our knowledge, only 
California, Washington, and perhaps Oregon make substantial 
effort to monitor use patterns or regulate these major chemical 
inputs into the environmental landscape. This lack of federal 
oversight is surprising since Department of Transportation 
employees of Pennsylvania and Iowa claim that herbicide 
applications to right-of-ways and roadways always contain a 
separate spray tank adjuvant (personal communications, 2015). 
Leaving regulation to the mandate of individual states results in 
a “wild west” approach that, in most cases, leaves these chemicals 
unaccounted for and allows for their increasing presence in our 
environment. Requiring regulation of spray tank adjuvants at 
the federal level in the USA would be a reasonable step toward 
addressing this problem.

While we recognize that chemical stressors alone are likely 
not responsible for the decline of pollinator or other non-target 
organisms, the true impact of chemical exposure is impossible to 
determine given our lack of understanding of the total chemical 
burden, a burden that clearly includes unknown and unevaluated 
materials. Coincidence of virus and pesticide exposures in declin-
ing honey bee colonies (80) is most noteworthy among other fac-
tors, which also includes malnutrition and elevated Varroa mites. 
More industry and regulatory agency disclosure of the identity 

of agrochemical adjuvant and formulation components would 
aid in evaluating risk and hazard assessment. Most adjuvants and 
inert ingredients are presently exempted from human safety tol-
erances, generally recognized as safe, and thus no environmental 
monitoring is required (7). A needed improvement is to include 
all formulation (81) and adjuvant (82) ingredients at relevant 
environmental input and exposure levels, and not just active 
ingredients, in studies to document the safety and risk for pol-
linators and other non-target species prior to product registration 
and commercialization.

AUTHOR COnTRiBUTiOnS

CM and MF were the primary authors and contributed substan-
tially to the concept, design, final drafting, and primary account-
ability of the content of this mini review. JF and RR were key to 
the acquisition, analysis, and interpretation of cited data and were 
involved in drafting and final approval for work cited here.

ACKnOwLeDGMenTS

The authors thank our previous graduate students Timothy 
J. Ciarlo and Wanyi Zhu, and postdoctoral Jing Chen for their 
research efforts included here. Funding for this work was provided 
by the USDA-NIFA-AFRI Coordinated Agricultural Project and 
Foundational Award Programs, particularly nos. 2011-67013-
30137 and 2014-67013-21591.

SUPPLeMenTARY MATeRiAL

The Supplementary Material for this article can be found online at 
http://journal.frontiersin.org/article/10.3389/fpubh.2016.00092

ReFeRenCeS

1. Green JM, Beestman GB. Recently patented and commercialized formula-
tion and adjuvant technology. Crop Prot (2007) 26(3):320–7. doi:10.1016/j.
cropro.2005.04.018 

2. Hazen JL. Adjuvants  –  terminology, classification, and chemistry. Weed 
Technol (2000) 14(4):773–84. doi:10.1614/0890-037X(2000)014[077
3:ATCAC]2.0.CO;2 

3. Green JM. Adjuvant outlook for pesticides. Pestic Outlook (2000) 11(5):196–9. 
doi:10.1039/b008021g 

4. Ryckaert B, Spanoghe P, Heremans B, Haesaert G, Steurbaut W. Possibilities to 
use tank-mix adjuvants for better fungicide spreading on triticale ears. J Agric 
Food Chem (2008) 56(17):8041–4. doi:10.1021/jf8005257 

5. Karande P, Jain A, Ergun K, Kispersky V, Mitragotri S. Design principles of 
chemical penetration enhancers for transdermal drug delivery. Proc Natl Acad 
Sci U S A (2005) 102(13):4688–93. doi:10.1073/pnas.0501176102 

6. Whitehead K, Karr N, Mitragotri S. Safe and effective permeation enhancers 
for oral drug delivery. Pharm Res (2008) 25(8):1782–8. doi:10.1007/
s11095-007-9488-9 

7. Mullin CA, Chen J, Fine JD, Frazier MT, Frazier JL. The formulation makes 
the honey bee poison. Pestic Biochem Physiol (2015) 120:27–35. doi:10.1016/j.
pestbp.2014.12.026 

8. Holloway PJ, Rees RT, Stock D. Interactions Between Adjuvants, Agrochemicals 
and Target Organisms. Berlin: Springer-Verlag (1994). 195 p.

9. Surgan M, Condon M, Cox C. Pesticide risk indicators: unidentified inert 
ingredients compromise their integrity and utility. Environ Manag (2010) 
45(4):834–41. doi:10.1007/s00267-009-9382-9 

10. Krogh KA, Halling-Sorensen B, Mogensen BB, Vejrup KV. Environmental 
properties and effects of nonionic surfactant adjuvants in pesticides: a review. 
Chemosphere (2003) 50(7):871–901. doi:10.1016/S0045-6535(02)00648-3 

11. Howe CM, Berrill M, Pauli BD, Helbing CC, Werry K, Veldhoen N. Toxicity 
of glyphosate-based pesticides to four North American frog species. Environ 
Toxicol Chem (2004) 23(8):1928–38. doi:10.1897/03-71 

12. Mesnage R, Defarge N, de Vendomois JS, Seralini GE. Potential toxic effects 
of glyphosate and its commercial formulations below regulatory limits. Food 
Chem Toxicol (2015) 84:133–53. doi:10.1016/j.fct.2015.08.012 

13. Williams GM, Kroes R, Munro IC. Safety evaluation and risk assessment of 
the herbicide roundup and its active ingredient, glyphosate, for humans. Regul 
Toxicol Pharmacol (2000) 31(2):117–65. doi:10.1006/rtph.1999.1371 

14. Mesnage R, Bernay B, Seralini GE. Ethoxylated adjuvants of glyphosate-based 
herbicides are active principles of human cell toxicity. Toxicology (2013) 
313(2–3):122–8. doi:10.1016/j.tox.2012.09.006 

15. Nobels I, Spanoghe P, Haesaert G, Robbens J, Blust R. Toxicity ranking and 
toxic mode of action evaluation of commonly used agricultural adjuvants on 
the basis of bacterial gene expression profiles. PLoS One (2011) 6(11):e24139. 
doi:10.1371/journal.pone.0024139 

16. Ma J, Qin W, Lu N, Wang P, Huang C, Xu R. Differential sensitivity of three 
cyanobacteria (Anabaena flos-aquae, Microcystis flos-aquae and Mirocystis 

http://www.frontiersin.org/Public_Health
http://www.frontiersin.org
http://www.frontiersin.org/Public_Health/archive
http://journal.frontiersin.org/article/10.3389/fpubh.2016.00092
http://dx.doi.org/10.1016/j.cropro.2005.04.018
http://dx.doi.org/10.1016/j.cropro.2005.04.018
http://dx.doi.org/10.1614/0890-037X(2000)014[0773:ATCAC]2.0.CO;2
http://dx.doi.org/10.1614/0890-037X(2000)014[0773:ATCAC]2.0.CO;2
http://dx.doi.org/10.1039/b008021g
http://dx.doi.org/10.1021/jf8005257
http://dx.doi.org/10.1073/pnas.0501176102
http://dx.doi.org/10.1007/s11095-007-9488-9
http://dx.doi.org/10.1007/s11095-007-9488-9
http://dx.doi.org/10.1016/j.pestbp.2014.12.026
http://dx.doi.org/10.1016/j.pestbp.2014.12.026
http://dx.doi.org/10.1007/s00267-009-9382-9
http://dx.doi.org/10.1016/S0045-6535(02)00648-3
http://dx.doi.org/10.1897/03-71
http://dx.doi.org/10.1016/j.fct.2015.08.012
http://dx.doi.org/10.1006/rtph.1999.1371
http://dx.doi.org/10.1016/j.tox.2012.09.006
http://dx.doi.org/10.1371/journal.pone.0024139


7

Mullin et al. Adjuvants as Non-Target Poisons

Frontiers in Public Health | www.frontiersin.org May 2016 | Volume 4 | Article 92

aeruginosa) to 10 pesticide adjuvants. Bull Environ Contam Toxicol (2005) 
75(5):873–81. doi:10.1007/s00128-005-0831-8 

17. Ma JY, Lin FC, Zhang RZ, Yu WW, Lu NH. Differential sensitivity of two 
green algae, Scenedesmus quadricauda and Chlorella vulgaris, to 14 pesti-
cide adjuvants. Ecotox Environ Saf (2004) 58:61–7. doi:10.1016/j.ecoenv. 
2003.08.023 

18. Coutellec MA, Delous G, Cravedi JP, Lagadic L. Effects of the mixture of 
diquat and a nonylphenol polyethoxylate adjuvant on fecundity and progeny 
early performances of the pond snail Lymnaea stagnalis in laboratory bio-
assays and microcosms. Chemosphere (2008) 73(3):326–36. doi:10.1016/j.
chemosphere.2008.05.068 

19. Deardorff AD, Stark JD. Acute toxicity and hazard assessment of spinosad 
and R-11 to three Cladoceran species and Coho salmon. Bull Environ Contam 
Toxicol (2009) 82(5):549–53. doi:10.1007/s00128-009-9643-6 

20. Chen XD, Culbert E, Hebert V, Stark JD. Mixture effects of the nonylphenyl 
polyethoxylate, R-11 and the insecticide, imidacloprid on population growth 
rate and other parameters of the crustacean, Ceriodaphnia dubia. Ecotox 
Environ Saf (2010) 73(2):132–7. doi:10.1016/j.ecoenv.2009.09.016 

21. Stark JD, Walthall WK. Agricultural adjuvants: acute mortality and effects 
on population growth rate of Daphnia pulex after chronic exposure. Environ 
Toxicol Chem (2003) 22(12):3056–61. doi:10.1897/02-504 

22. Henry CJ, Higgins KF, Buhl KJ. Acute toxicity and hazard assessment of 
Rodeo®, X-77 spreader®, and Chem-Trol® to aquatic invertebrates. Arch 
Environ Contam Toxicol (1994) 27(3):392–9. doi:10.1007/BF00213176 

23. Tatum VL, Borton DL, Streblow WL, Louch J, Shepard JP. Acute toxicity 
of commonly used forestry herbicide mixtures to Ceriodaphnia dubia and 
Pimephales promelas. Environ Toxicol (2011) 27(12):671–84. doi:10.1002/
tox.20686 

24. Haller WT, Stocker RK. Toxicity of 19 adjuvants to juvenile Lepomis macrochi-
rus (bluegill sunfish). Environ Toxicol Chem (2003) 22(3):615–9. doi:10.1002/
etc.5620220321 

25. Sanchez W, Palluel O, Lagadic L, Ait-Aissa S, Porcher JM. Biochemical effects 
of nonylphenol polyethoxylate adjuvant, Diquat herbicide and their mixture 
on the three-spined stickleback (Gasterosteus aculeatus L.). Mar Environ Res 
(2006) 62:S29–33. doi:10.1016/j.marenvres.2006.04.028 

26. Mann RM, Bidwell JR. The acute toxicity of agricultural surfactants to the 
tadpoles of four Australian and, two exotic frogs. Environ Pollut (2001) 
114(2):195–205. doi:10.1016/S0269-7491(00)00216-5 

27. Matteson JW, Taft HM. Effect of various adjuvants on systemic insecticidal 
activity of Phorate and Zectran. J Econ Entomol (1964) 57(3):325–6. 
doi:10.1093/jee/57.3.325 

28. Sims SR, Appel AG. Linear alcohol ethoxylates: insecticidal and synergistic 
effects on German cockroaches (Blattodea: Blattellidae) and other insects. 
J Econ Entomol (2007) 100(3):871–9. doi:10.1093/jee/100.3.871 

29. Schlenk D, Lavado R, Loyo-Rosales JE, Jones W, Maryoung L, Riar N, 
et  al. Reconstitution studies of pesticides and surfactants exploring the 
cause of estrogenic activity observed in surface waters of the San Francisco 
bay delta. Environ Sci Technol (2012) 46(16):9106–11. doi:10.1021/ 
es3016759 

30. Lin N, Garry VF. In vitro studies of cellular and molecular developmental 
toxicity of adjuvants, herbicides, and fungicides commonly used in Red 
River Valley, Minnesota. J Toxicol Environ Hlth A (2000) 60(6):423–39. 
doi:10.1080/00984100050033494 

31. Bakke D. Human and ecological risk assessment of nonylphenol 
 polyethoxylate-based (NPE) surfactants in Forest Service herbicide 
 applications. USDA Forest Service Report. Vallejo, CA: Pacific Southwest 
Region, USDA Forest Service (2003). 110 p.

32. Mullin CA. Effects of “inactive” ingredients on bees. Curr Opin Insect Sci 
(2015) 10:194–200. doi:10.1016/j.cois.2015.05.006 

33. Del Sarto MCL, Oliveira EE, Guedes RNC, Campos LAO. Differential insecti-
cide susceptibility of the Neotropical stingless bee Melipona quadrifasciata and 
the honey bee Apis mellifera. Apidologie (2014) 45(5):626–36. doi:10.1007/
s13592-014-0281-6 

34. Zhao S, Yuan S-K, Cai B, Jiang H, Wang X-J, Lin R-H, et al. The acute oral 
toxicity of 300 formulated pesticides to Apis mellifera. Agrochemicals (2011) 
5:278–80. 

35. Boily M, Sarrasin B, DeBlois C, Aras P, Chagnon M. Acetylcholinesterase 
in honey bees (Apis mellifera) exposed to neonicotinoids, atrazine and 

glyphosate: laboratory and field experiments. Environ Sci Pollut Res (2013) 
20(8):5603–14. doi:10.1007/s11356-013-1568-2 

36. van den Heever JP, Thompson TS, Curtis JM, Pernal SF. Determination of 
dicyclohexylamine and fumagillin in honey by LC-MS/MS. Food Anal 
Methods (2015) 8(3):767–77. doi:10.1007/s12161-014-9956-x 

37. Moffett JO, Morton HL. Repellency of surfactants to honey bees. Environ 
Entomol (1975) 4(5):780–2. doi:10.1093/ee/4.5.780 

38. Goodwin RM, McBrydie HM. Effect of surfactants on honey bee survival. N 
Z Pl Prot (2000) 53:230–4. 

39. Donovan BJ, Elliott GS. Honey bee response to high concentrations of some 
new spray adjuvants. N Z Pl Prot (2001) 54:51–5. 

40. Artz DR, Pitts-Singer TL. Effects of fungicide and adjuvant sprays on nesting 
behavior in two managed solitary bees, Osmia lignaria and Megachile rotun-
data. PLoS One (2015) 10(8):e0135688. doi:10.1371/journal.pone.0135688 

41. Johnson RM, Percel EG. Effect of a fungicide and spray adjuvant on 
queen-rearing success in honey bees (Hymenoptera: Apidae). J Econ Entomol 
(2013) 106(5):1952–7. doi:10.1603/ec13199 

42. Oliver R. The case of Pristine® and the dying queen cells – pesticide mystery 
solved? Amer Bee J (2013) 153(3):287–93. 

43. Mommaerts V, Hagenaars A, Meyer J, De Coen W, Swevers L, Mosallanejad H, 
et al. Impact of a perfluorinated organic compound PFOS on the terrestrial 
pollinator Bombus terrestris (Insecta, Hymenoptera). Ecotoxicology (2011) 
20(2):447–56. doi:10.1007/s10646-011-0596-2 

44. Zhu WY, Schmehl DR, Mullin CA, Frazier JL. Four common pesticides, 
their mixtures and a formulation solvent in the hive environment have high 
oral toxicity to honey bee larvae. PLoS One (2014) 9(1):e77547. doi:10.1371/
journal.pone.0077547 

45. Ciarlo TJ, Mullin CA, Frazier JL, Schmehl DR. Learning impairment in honey 
bees caused by agricultural spray adjuvants. PLoS One (2012) 7(7):e40848. 
doi:10.1371/journal.pone.0040848 

46. Kaiser H. Stomatal uptake of mineral particles from a sprayed suspension con-
taining an organosilicone surfactant. J Pl Nutr Soil Sci (2014) 177(6):869–74. 
doi:10.1002/jpln.201300607 

47. Lizamore D, Winefield C. The addition of an organosilicone surfactant to 
Agrobacterium suspensions enables efficient transient transformation of 
in vitro grapevine leaf tissue at ambient pressure. Plant Cell Tiss Organ Cult 
(2015) 120(2):607–15. doi:10.1007/s11240-014-0627-9 

48. Staveley JP, Law SA, Fairbrother A, Menzie CA. A causal analysis of observed 
declines in managed honey bees (Apis mellifera). Hum Ecol Risk Assess (2014) 
20(2):566–91. doi:10.1080/10807039.2013.831263 

49. Steinhauer NA, Rennich K, Wilson ME, Caron DM, Lengerich EJ, Pettis JS, 
et al. A national survey of managed honey bee 2012-2013 annual colony losses 
in the USA: results from the bee informed partnership. J Apic Res (2014) 
53(1):1–18. doi:10.3896/ibra.1.53.1.01 

50. Lee KV, Steinhauer N, Rennich K, Wilson ME, Tarpy DR, Caron DM, et al. 
A national survey of managed honey bee 2013-2014 annual colony losses in 
the USA. Apidologie (2015) 46(3):292–305. doi:10.1007/s13592-015-0356-z 

51. Frazier M, Mullin C, Frazier J, Ashcraft S, Leslie E, Mussen E, et al. Assessing 
honey bee (Hymenoptera: Apidae) foraging populations and the potential 
impact of pesticides on eight U. S. crops. J Econ Entomol (2015) 108(4):2141–
52. doi:10.1093/jee/tov195 

52. Pettis JS, Lichtenberg EM, Andree M, Stitzinger J, Rose R, VanEngelsdorp D. 
Crop pollination exposes honey bees to pesticides which alters their suscep-
tibility to the gut pathogen Nosema ceranae. PLoS One (2013) 8(7):e70182. 
doi:10.1371/journal.pone.0070182 

53. California Department of Pesticide Regulation, California Pesticide 
Information Portal (CALPIP). (2015). Available from: http://calpip.cdpr.
ca.gov/infodocs.cfm?page=knownissues

54. Lundin O, Rundlof M, Smith HG, Fries I, Bommarco R. Neonicotinoid insec-
ticides and their impacts on bees: a systematic review of research approaches 
and identification of knowledge gaps. PLoS One (2015) 10(8):e0136928. 
doi:10.1371/journal.pone.0136928 

55. California Department of Pesticide Regulation, California Pesticide 
Information Portal (CALPIP). (2015). Available from: http://calpip.cdpr.
ca.gov/main.cfm

56. Zhan Y, Zhang MH. Spatial and temporal patterns of pesticide use on 
California almonds and associated risks to the surrounding environment. Sci 
Total Environ (2014) 472:517–29. doi:10.1016/j.scitotenv.2013.11.022 

http://www.frontiersin.org/Public_Health
http://www.frontiersin.org
http://www.frontiersin.org/Public_Health/archive
http://dx.doi.org/10.1007/s00128-005-0831-8
http://dx.doi.org/10.1016/j.ecoenv.
2003.08.023
http://dx.doi.org/10.1016/j.ecoenv.
2003.08.023
http://dx.doi.org/10.1016/j.chemosphere.2008.05.068
http://dx.doi.org/10.1016/j.chemosphere.2008.05.068
http://dx.doi.org/10.1007/s00128-009-9643-6
http://dx.doi.org/10.1016/j.ecoenv.2009.09.016
http://dx.doi.org/10.1897/02-504
http://dx.doi.org/10.1007/BF00213176
http://dx.doi.org/10.1002/tox.20686
http://dx.doi.org/10.1002/tox.20686
http://dx.doi.org/10.1002/etc.5620220321
http://dx.doi.org/10.1002/etc.5620220321
http://dx.doi.org/10.1016/j.marenvres.2006.04.028
http://dx.doi.org/10.1016/S0269-7491(00)00216-5
http://dx.doi.org/10.1093/jee/57.3.325
http://dx.doi.org/10.1093/jee/100.3.871
http://dx.doi.org/10.1021/
es3016759
http://dx.doi.org/10.1021/
es3016759
http://dx.doi.org/10.1080/00984100050033494
http://dx.doi.org/10.1016/j.cois.2015.05.006
http://dx.doi.org/10.1007/s13592-014-0281-6
http://dx.doi.org/10.1007/s13592-014-0281-6
http://dx.doi.org/10.1007/s11356-013-1568-2
http://dx.doi.org/10.1007/s12161-014-9956-x
http://dx.doi.org/10.1093/ee/4.5.780
http://dx.doi.org/10.1371/journal.pone.0135688
http://dx.doi.org/10.1603/ec13199
http://dx.doi.org/10.1007/s10646-011-0596-2
http://dx.doi.org/10.1371/journal.pone.0077547
http://dx.doi.org/10.1371/journal.pone.0077547
http://dx.doi.org/10.1371/journal.pone.0040848
http://dx.doi.org/10.1002/jpln.201300607
http://dx.doi.org/10.1007/s11240-014-0627-9
http://dx.doi.org/10.1080/10807039.2013.831263
http://dx.doi.org/10.3896/ibra.1.53.1.01
http://dx.doi.org/10.1007/s13592-015-0356-z
http://dx.doi.org/10.1093/jee/tov195
http://dx.doi.org/10.1371/journal.pone.0070182
http://calpip.cdpr.ca.gov/infodocs.cfm?page=knownissues
http://calpip.cdpr.ca.gov/infodocs.cfm?page=knownissues
http://dx.doi.org/10.1371/journal.pone.0136928
http://calpip.cdpr.ca.gov/main.cfm
http://calpip.cdpr.ca.gov/main.cfm
http://dx.doi.org/10.1016/j.scitotenv.2013.11.022


8

Mullin et al. Adjuvants as Non-Target Poisons

Frontiers in Public Health | www.frontiersin.org May 2016 | Volume 4 | Article 92

57. California Department of Food and Agriculture. 2014 California Almond 
Acreage Report. (2015). 8 p. Available from: http://www.nass.usda.gov/
Statistics_by_State/California/Publications/Fruits_and_Nuts/index.php

58. Stevens PJG. Organosilicone surfactants as adjuvants for agrochemicals. Pestic 
Sci (1993) 38(2–3):103–22. doi:10.1002/ps.2780380206 

59. Penner D. Activator adjuvants. Weed Technol (2000) 14(4):785–91. 
doi:10.1614/0890-037X(2000)014[0785:AA]2.0.CO;2 

60. Chen J, Mullin CA. Quantitative determination of trisiloxane surfactants 
in beehive environments based on liquid chromatography coupled to mass 
spectrometry. Environ Sci Technol (2013) 47(16):9317–23. doi:10.1021/ 
es4010619 

61. US EPA. Pesticide Registration: Inert Ingredients Overview and Guidance. 
(2015). Available from: http://www2.epa.gov/pesticide-registration/
inert-ingredients-overview-and-guidance

62. Chen J, Mullin CA. Determination of nonylphenol ethoxylate and octylphenol 
ethoxylate surfactants in beehive samples by high performance liquid chro-
matography coupled to mass spectrometry. Food Chem (2014) 158:473–9. 
doi:10.1016/j.foodchem.2014.03.004 

63. Chen J, Mullin CA. Characterization of trisiloxane surfactants from agro-
chemical adjuvants and pollinator-related matrices using liquid chromatogra-
phy coupled to mass spectrometry. J Agric Food Chem (2015) 63(12):5120–5. 
doi:10.1021/jf505634x 

64. Katagi T. Surfactant effects on environmental behavior of pesticides. In: 
Whitacre DM, editor. Reviews of Environmental Contamination and Toxicology. 
(Vol. 194), New York: Springer (2008). p. 71–177.

65. Ryckaert B, Spanoghe P, Haesaert G, Heremans B, Isebaert S, Steurbaut 
W. Quantitative determination of the influence of adjuvants on foliar 
fungicide residues. Crop Prot (2007) 26(10):1589–94. doi:10.1016/j.cropro. 
2007.02.011 

66. Holloway PJ, Western NM. Tank-mix adjuvants and pesticide residues: some 
regulatory and quantitative aspects. Pest Mgt Sci (2003) 59(11):1237–44. 
doi:10.1002/ps.761 

67. Botias C, David A, Horwood J, Abdul-Sada A, Nicholls E, Hill E, et  al. 
Neonicotinoid residues in wildflowers, a potential route of chronic exposure 
for bees. Environ Sci Technol (2015) 49(21):12731–40. doi:10.1021/acs.
est.5b03459 

68. Bonmatin JM, Giorio C, Girolami V, Goulson D, Kreutzweiser DP, Krupke C, 
et al. Environmental fate and exposure; neonicotinoids and fipronil. Environ 
Sci Pollut Res (2015) 22(1):35–67. doi:10.1007/s11356-014-3332-7 

69. US EPA. Imidacloprid Preliminary Pollinator Assessment Table of Appendices. 
(2016). Available from: http://www.regulations.gov/#!documentDetail;D= 
EPA-HQ-OPP-2008-0844-0139

70. Cowles RS, Cowles EA, McDermott AM, Ramoutar D. “Inert” formulation 
ingredients with activity: toxicity of trisiloxane surfactant solutions to 
twospotted spider mites (Acari: Tetranychidae). J Econ Entomol (2000) 
93(2):180–8. doi:10.1603/0022-0493-93.2.180 

71. Acheampong S, Stark JD. Effects of the agricultural adjuvant Sylgard 309 
and the insecticide pymetrozine on demographic parameters of the aphid 

parasitoid, Diaeretiella rapae. Biol Control (2004) 31(2):133–7. doi:10.1016/j.
biocontrol.2004.03.010 

72. Srinivasan R, Hoy MA, Singwand R, Rogers ME. Laboratory and field 
evaluations of Silwet L-77 and kinetic alone and in combination with imi-
dacloprid and abamectin for the management of the Asian citrus psyllid, 
Diaphorina citri (Hemiptera: Psyllidae). Fl Entomologist (2008) 91(1):87–100. 
doi:10.1653/0015-4040(2008)091[0087:LAFEOS]2.0.CO;2 

73. Rücker C, Kümmerer K. Environmental chemistry of organosiloxanes. Chem 
Rev (2015) 115(1):466–524. doi:10.1021/cr500319v 

74. Simon-Delso N, Amaral-Rogers V, Belzunces LP, Bonmatin JM, Chagnon M, 
Downs C, et al. Systemic insecticides (neonicotinoids and fipronil): trends, 
uses, mode of action and metabolites. Environ Sci Pollut Res (2015) 22(1):5–34. 
doi:10.1007/s11356-014-3470-y 

75. Rotroff DM, Martin MT, Dix DJ, Filer DL, Houck KA, Knudsen TB, et  al. 
Predictive endocrine testing in the 21st century using in vitro assays of estro-
gen receptor signaling responses. Environ Sci Technol (2014) 48(15):8706–16. 
doi:10.1021/es502676e 

76. Barel AO, Paye M, Maibach HI. Handbook of Cosmetic Science and Technology. 
3rd ed. New York: Informa Healthcare (2009). 869 p.

77. Bouslimania A, Porto C, Rath CM, Wang M, Guo Y, Gonzalez A, et  al. 
Molecular cartography of the human skin surface in 3D. Proc Natl Acad Sci U 
S A (2015) 112:E2120–9. doi:10.1073/pnas.1424409112 

78. Laubie B, Bonnafous E, Desjardin V, Germain P, Fleury E. Silicone-based sur-
factant degradation in aqueous media. Sci Total Environ (2013) 454:199–205. 
doi:10.1016/j.scitotenv.2013.02.022 

79. OMRI. OMRI Product List. (2015). Available from: http://www.omri.org/
omri-lists

80. Simon-Delso N, San Martin G, Bruneau E, Minsart LA, Mouret C, Hautier L. 
Honeybee colony disorder in crop areas: the role of pesticides and viruses. 
PLoS One (2014) 9(7):e103073. doi:10.1371/journal.pone.0103073 

81. Poquet Y, Bodin L, Tchamitchian M, Fusellier M, Giroud B, Lafay F, et  al. 
A pragmatic approach to assess the exposure of the honey bee (Apis mel-
lifera) when subjected to pesticide spray. PLoS One (2014) 9(11):e113728. 
doi:10.1371/journal.pone.0113728 

82. Suryanarayanan S. Pesticides and pollinators: a context-sensitive pol-
icy approach. Curr Opin Insect Sci (2015) 10:149–55. doi:10.1016/j.
cois.2015.05.009 

Conflict of Interest Statement: The authors declare that the research was 
 conducted in the absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Copyright © 2016 Mullin, Fine, Reynolds and Frazier. This is an open-access article 
distributed under the terms of the Creative Commons Attribution License (CC BY). 
The use, distribution or reproduction in other forums is permitted, provided the 
original author(s) or licensor are credited and that the original publication in this 
journal is cited, in accordance with accepted academic practice. No use, distribution 
or reproduction is permitted which does not comply with these terms.

http://www.frontiersin.org/Public_Health
http://www.frontiersin.org
http://www.frontiersin.org/Public_Health/archive
http://www.nass.usda.gov/Statistics_by_State/California/Publications/Fruits_and_Nuts/index.php
http://www.nass.usda.gov/Statistics_by_State/California/Publications/Fruits_and_Nuts/index.php
http://dx.doi.org/10.1002/ps.2780380206
http://dx.doi.org/10.1614/0890-037X(2000)014[0785:AA]2.0.CO;2
http://dx.doi.org/10.1021/es4010619
http://dx.doi.org/10.1021/es4010619
http://www2.epa.gov/pesticide-registration/inert-ingredients-overview-and-guidance
http://www2.epa.gov/pesticide-registration/inert-ingredients-overview-and-guidance
http://dx.doi.org/10.1016/j.foodchem.2014.03.004
http://dx.doi.org/10.1021/jf505634x
http://dx.doi.org/10.1016/j.cropro.
2007.02.011
http://dx.doi.org/10.1016/j.cropro.
2007.02.011
http://dx.doi.org/10.1002/ps.761
http://dx.doi.org/10.1021/acs.est.5b03459
http://dx.doi.org/10.1021/acs.est.5b03459
http://dx.doi.org/10.1007/s11356-014-3332-7
http://www.regulations.gov/#!documentDetail;D=EPA-HQ-OPP-2008-0844-0139
http://www.regulations.gov/#!documentDetail;D=EPA-HQ-OPP-2008-0844-0139
http://dx.doi.org/10.1603/0022-0493-93.2.180
http://dx.doi.org/10.1016/j.biocontrol.2004.03.010
http://dx.doi.org/10.1016/j.biocontrol.2004.03.010
http://dx.doi.org/10.1653/0015-4040(2008)091[0087:LAFEOS]2.0.CO;2
http://dx.doi.org/10.1021/cr500319v
http://dx.doi.org/10.1007/s11356-014-3470-y
http://dx.doi.org/10.1021/es502676e
http://dx.doi.org/10.1073/pnas.1424409112
http://dx.doi.org/10.1016/j.scitotenv.2013.02.022
http://www.omri.org/omri-lists
http://www.omri.org/omri-lists
http://dx.doi.org/10.1371/journal.pone.0103073
http://dx.doi.org/10.1371/journal.pone.0113728
http://dx.doi.org/10.1016/j.cois.2015.05.009
http://dx.doi.org/10.1016/j.cois.2015.05.009
http://creativecommons.org/licenses/by/4.0/

	Toxicological Risks of Agrochemical Spray Adjuvants: Organosilicone Surfactants May Not Be Safe
	Introduction
	Spray Adjuvants Contribute to the Toxic Load
	Spray Adjuvant Use during Pollination of California Almonds
	Organosilicones: The Most Powerful Surfactants
	Are Organosilicone Surfactants Causing Harm and Underregulated?
	Author Contributions
	Acknowledgments
	Supplementary Material
	References


