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Abstract: Western honey bees, Apis mellifera, live in highly eusocial colonies that are each typically
headed by a single queen. The queen is the sole reproductive female in a healthy colony, and because
long-term colony survival depends on her ability to produce a large number of offspring, queen
health is essential for colony success. Honey bees have recently been experiencing considerable
declines in colony health. Among a number of biotic and abiotic factors known to impact colony
health, disease and queen failure are repeatedly reported as important factors underlying colony
losses. Surprisingly, there are relatively few studies on the relationship and interaction between
honey bee diseases and queen quality. It is critical to understand the negative impacts of pests
and pathogens on queen health, how queen problems might enable disease, and how both factors
influence colony health. Here, we review the current literature on queen reproductive potential and
the impacts of honey bee parasites and pathogens on queens. We conclude by highlighting gaps
in our knowledge on the combination of disease and queen failure to provide a perspective and
prioritize further research to mitigate disease, improve queen quality, and ensure colony health.

Keywords: honey bee queen; queen quality; honey bee disease; colony health; colony fitness; queen
fitness; pollinators

1. Introduction

Pollination is required for approximately 35% of global food production, and honey bees
(Apis mellifera) are the only pollinators successfully managed on a large scale [1,2]. Forty percent
of invertebrate pollinators are at risk of extinction, and even managed honey bee colonies have been
dying at high rates for several decades [3–7]. Continued declines in pollinator health imperil global
food security and economic stability.

The death of honey bee colonies is a complex phenomenon that can be attributed to multiple
biotic and abiotic factors, as well as interactions among them [6,8–11]. Pathogens and parasites
have been linked to poor colony health and can increase colony losses [12–16]. The ectoparasitic
mite, Varroa destructor, is considered the main candidate involved in winter colony losses in most
managed honey bee populations [15,17–21]. Furthermore, pathogenic viruses are a major threat to
honey bee colonies [12], especially those associated with V. destructor, including Deformed wing virus
(DWV), Israeli acute bee paralysis virus (IAPV), and Acute bee paralysis virus (ABPV) [12,15,19,22–26].
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Honey bee mortality may increase when virulent forms of associated viruses are vectored by the varroa
mite [27]. The microsporidian Nosema ceranae has also been associated with collapse of honey bee
colonies in some countries, although its role remains controversial [28–31]. Melissococcus plutonius, the
etiological agent of European Foulbrood, is a serious disease of honey bee brood and can lead to the
loss of the host colony [32], which has been increasingly observed in Switzerland and the UK [33,34].
Paenibacillus larvae causes American Foulbrood, which has historically been the most noxious honey
bee larval disease and is also causing economic losses to beekeepers worldwide [35].

In addition to parasites and pathogens, failure or loss of queens has been considered one of
the most important factors leading to colony losses [5,15,36–38], especially outside of the typical
queen-rearing season. “Poor queens” are reported as the primary problem in a number of beekeeping
operations, and it consistently ranks among the top reasons for colony failure [38,39]. The queen is
the sole reproductive female in a colony, and the presence of a healthy, high-quality queen is essential
for colony survival not only because of her ability to lay large numbers of female and male eggs but
also because the social coherence of a colony depends on her pheromones [40]. Although queens
have a 3–4 year adult lifespan [40], diminished longevity of queens (<1 year) is commonly and
increasingly observed [7,39,41,42]. As such, commercial beekeepers typically replace their queens
every 1–2 years [43–46] because of the critical importance of a vigorous queen to colony survival
and productivity.

Here, we review the literature on queen quality and the impacts that honey bee parasites and
pathogens have on queen health. We aim to highlight the gaps in this area of research to give
perspective and priority for further investigations in order to improve queen quality and colony health.
Ultimately, we seek to help beekeepers produce and maintain healthy and high-quality queens, in
order to promote colony survival and to maintain the economic viability of the apiculture industry.

2. Honey Bee Queen Reproductive Potential

The growth, productivity, and survival of a colony, with tens of thousands worker bees, depends
in large part on the health and reproductive capacity of its queen and the number of drones with
which she has mated [41,46–48]. The quantitative and qualitative reproductive potential of a queen
represents her “quality”, which results from her genome, her developmental conditions, mating
success, and adult environment (including beekeeper management) [49–51]. Here, we chose to focus
on several fitness-related criteria of queen quality, including physical characteristics and mating
success that define reproductive quality in queens and have been empirically linked to colony health
and productivity.

2.1. Physical Quality

2.1.1. Body Size

Queen weight is a physical characteristic that is critical for evaluating the quality of honey
bee queens [52–55]. Specifically, common measures have been weight at emergence (which is
presumably associated with queen’s ovaries; but see [56,57]), weight after mating, and the onset
of oviposition [52,58]. Most often, queen weight at emergence is used as an indicator of queen quality, a
measure that varies drastically [52,58–60]. This variation is influenced by a variety of factors, including
the genetic background, the age at which the larva is initially reared as a queen, time of the year, and
rearing conditions of the colony [49,52,58,61–65].

The weight of a queen varies at different periods of her adult life [52,54,58]. In virgin queens,
it decreases gradually from emergence until mating, with the most rapid loss during the first 36 h.
Heavy queens decrease their weight more than moderate and lighter queens [52,58]. After mating,
queens start to recover their weights to post-emergence levels [52,58,66]. This seems reasonable
because the mating flight(s) requires a lighter body for adequate lift and flight duration, otherwise
it can decrease her mating success [67]. After queen mating and the onset of oviposition, a queen’s
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ovaries start to develop, significantly contributing to an increase in body weight [68]. Queen weight,
either at emergence or after becoming reproductive, is significantly correlated with queen attractiveness
to worker bees, mating, and reproductive success, although different empirical studies are equivocal
on the magnitude of this effect [53,55,60,61,69,70]. Weight is also positively associated with greater
acceptance when a new queen is introduced into a foreign colony [70–73]. Mated and older virgin
queens are more attractive to workers and may be more readily accepted than younger virgin queens,
because they produce a full queen mandibular pheromone (QMP) profile [74,75], but see [76].

Most reports demonstrate a positive correlation between adult queen weight, the number of
mating flights, and overall mating success [52,53,55,77]. While weight at emergence does not seem to
be associated with mating [52,69], heavier queens at emergence tend to initiate oviposition later than
queens with lower weight after being artificially inseminated [78]. Queen weight also has been shown
to correlate with ovary weight, the size and number of ovarioles, the diameter of the spermatheca, and
the number of stored spermatozoa [52,53,60,61,77].

Weight is an integrative measure of size and physiological condition. Thus, it could be argued
that body weight is the most informative indicator of queen quality. However, external measurements
of queen size, such as thorax width, head width, and wing lengths, have also been investigated in
correlation with queen reproductive organs in different studies. Results of these studies are equivocal.
For example, thorax width was positively correlated with both stored sperm number and mating
frequency [53], but no correlation was found between thorax width and ovariole number, ovary weight,
or mating number [55,57,77].

2.1.2. Internal Reproductive Organs

In an egg-laying queen, the ovaries occupy the vast majority of the abdominal cavity [40].
The weight of ovaries has been investigated as one of the physical criteria to assess the reproductive
potential of honey bee queens [52,79,80]. Ovaries of virgin queens are morphologically different and
smaller compared to egg-laying queens [68,81]; because well-developed ovaries are required for egg
production, the ovaries of egg-laying queens are about eight times larger than those in virgins [68].
Ovary development occurs soon after mating and is associated with distinct gene-expression patterns
in the brain and ovaries, physiological, and behavioral changes in the queen [75,82,83]. The weight
of ovaries in a mature egg-laying queen not only depends on the number of ovarioles but also
on the number and developmental stage of eggs in them. During winter, egg-laying activity by
queens decreases or stops, which results in the queen having smaller and less-developed ovaries [68].
Ovary size and fertility are usually positively correlated [62]. However, under certain circumstances,
perhaps due to stress or disease, this relation may not hold [52]. The number of ovarioles can be
evaluated at any time during the life of a queen, but it is most reliably scored a few months after
mating [84]. In addition to ovariole number, the size of a honey bee queen ovary is determined by the
length of the ovarioles, which is more flexible during a queen’s lifetime and reflects her physiological
status. Symmetry between the left and right ovaries may [84] or may not [57] be consistent within
and among queens or honey bee races [54,57]. Queen ovary size and symmetry are affected by larval
nutrition, and during artificial queen production the age of larvae that are transferred into queen cells
is critical [60,85], but see [56,62].

After mating, spermatozoa are stored in the spermatheca for the duration of the queen’s remaining
life [40]. The number of stored sperm and their viability (i.e., the percentage of live stored sperm) are
two critical measures of the reproductive capacity of the queen and her lifespan [59,86]. Therefore,
the spermatheca size is another valid measure of physical queen quality, because larger spermatheca
can hold more sperm. The spermatheca wall is composed of a single layer of columnar epithelium,
lined internally with a thick mucinous cuticle and covered with an extensive tracheal network [84].
Spermatheca size can be measured with or without the tracheal net, and its diameter should be larger
than 1.2 mm for high-quality queens [54,84]. The size of the spermatheca in a queen is also influenced
by rearing conditions and the genetic source of the queen and is inversely proportional to the age
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at which the queen is initially reared as larvae [55,62]. Queens raised from newly hatched larvae
have larger spermathecae [56,62,80]. This measurement has been used as a direct estimation of the
volume and as an indirect estimation of the theoretical maximum number of spermatozoa stored in
spermatheca [55,61,77,84]. However, spermathecae are rarely filled completely, as the occupied volume
in experimental queens is only an average of 47% [55,77].

2.2. Mating Quality

2.2.1. Mating Number

Very early in their lives (1–2 weeks of age), honey bee queens take one or several mating
flights [87] to mate with drones. Mating usually occurs at a considerable distance from their natal
colonies at so-called drone congregation areas (DCAs) [88–91], presumably to avoid inbreeding.
Honey bee queens are highly polyandrous, with the typical mating number of queens varying between
6 and 26 with an average of 12–14 [53,87,89,92]. Such estimates have typically been obtained using
genetic marker analysis (normally microsatellites) applied to the worker offspring of a queen to
determine the number of subfamilies (patrilines) and therefore the number of drones with which she
mated [53,89,92]. There have been dozens of theories to explain polyandry among insects [93,94].
While there are certainly fitness costs of multiple mating at the individual level (e.g., longer exposure
to predation, increased exposure to diseases [95]), several counterbalancing benefits to polyandry exist.
Perhaps most importantly, multiple mating increases the genetic diversity within the colony, leading
to an increased likelihood that the genetic resources exist within the colony to withstand new biotic
or abiotic threats [96]. More specifically, multiple mating has been shown to offer benefits including
an increase in the number of stored sperm [53,91], enhanced queen attractiveness [75], enhanced
division of labor within the colony [97–99], stabilization of brood nest temperature [100,101], improved
communication among the workers [102–104], reduced incidence of disease, and improved colony
fitness [48,105–108], all of which positively affect colony growth and survival [41,48]. It should be
noted that mating number is generally used as a proxy for genetic diversity, if the drones are too inbred
or exhibit low genetic diversity, the advantage of multiple mating for the queen and the colony will be
muted. Overall, however, increased mating number and the resultant intra-colony genetic diversity of
nest-mates is another important criterion for determining the reproductive quality of queens [48,106].

2.2.2. Insemination Success

Queen longevity is inextricably linked to an adequate number of viable stored sperm in the
spermatheca, because queens are often replaced once they begin to lay unfertilized drone eggs inside
the worker brood nest as a result of sperm depletion [40]. The critical stage of sperm storage occurs
immediately after mating [109] when a queen returns to her hive with an average of 10–20 µL of semen
(containing 100 million spermatozoa) in the median and lateral oviducts within her genital tract [110].
The vast majority of this semen is discharged, with only 3%–5% of each drone’s sperm actively
migrating into the spermatheca where it is stored [110]. The estimated number of stored sperm in a
queen’s spermatheca has been used to assess her reproductive quality [53,55]. Woyke [110] considered
queens that carried fewer than 3 million sperm to be “inadequately mated”. Different studies have
shown that 13.6%–19.0% of commercially produced queens are below this threshold which indicates
a serious problem, although significant variation among commercial sources exist [53,55,79,111].
Insufficient sperm supply clearly constitutes a fitness disadvantage for the queen herself as well as
her colony, as the total number of sperm decreases with the age of the queen through use and abiotic
stressors such as pesticides [112,113].

The viability of spermatozoa is also a crucial parameter of mating and reproductive success,
which should be maintained at a high level throughout mating and storage [114]. After sperm storage,
sperm cells remain quiescent and the queen provides them with secretions from the spermathecal
gland to keep the sperm viable over several years [115,116]. Sperm viability in commercially produced
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queens showed significant differences across queen producers with an average of 83.7% [55]. Generally,
higher sperm mortality is observed in the spermatheca of older queens [112]. Even the movement
patterns of the spermatozoa stored in the spermathecae of older queens are slower than those from
younger queens [86]. Low sperm viability due to temperature spikes has also been directly linked to
colony failure [117].

3. Parasites and Queen Quality

Queens are considered to be less susceptible to infections than workers [118]. Queens are
continuously attended to and fed by young worker bees [40], which may provide physical and social
barriers to protect them from infection [119,120]. In addition to such social immune mechanisms, queens
may also be inherently better equipped with individual immune defenses [121]. Nonetheless, queens
are susceptible to most of the diseases that infect worker bees, including Nosema spp. [28,122–125], the
tracheal mite Acarapis woodi [111,126–128], and numerous viruses [53,129–133]. Although studies have
measured parasite and pathogen levels in queens, only a few studies have investigated the impact of
these threats on queen health, performance, and lifespan [119,130,134,135]. Even fewer studies have
investigated transmission routes of these pathogens and parasites to the queen [95,136–138] and the
vertical transmission to offspring throughout the colony [138–140]. Due to modern apicultural practices,
queens represent an important mode of inter-colonial disease spread even over long geographic
distances [141]. Thus, the physiological quality of queens may be affected by diseases but the vector
capacity of the queen for diseases is another measure of quality [54,142].

3.1. Varroa Mites

The parasitic varroa mite, V. destructor, is an obligate ectoparasite of honey bees and generally
considered to be the most serious threat for managed honey bee populations [11,16–18,143,144].
The impact of varroa mites on honey bee health is particularly severe because varroa can also act as a
vector for a number of bee viruses [145–148]. The act of feeding on bees by varroa directly injects a large
number of viral particles into the host [145,147,149], selecting for certain (more virulent) virus strains
and causing viral pathologies, such as immunosuppression, weight loss, decreased flight ability, and
reduced lifespan [19,150–152]. Population increases of varroa mites lead to varroosis in the colony [20],
which ultimately leads to colony loss. The reproductive success of a mite is positively correlated with
its host’s post-capping developmental duration. Consequently, mites prefer to parasitize drone brood
over the workers and queens [153,154] presumably because the drones’ longer development time
increases mite fitness. Drone brood suffers from higher varroa parasitism than worker brood because
of active choices by the mites based on brood or food odors, or because a slower drone development
and more nurse bee visits translate into more opportunities to infest drone cells [155,156].

Contrary to their preference for drones, mites are rarely observed in queen cells. This aversion is
likely an adaptive response to the shorter post-capping stage of queen brood (8–8.5 days) and may be
mediated by intrinsic differences of larval scents and presence of octanoic acid in royal jelly [154,157].
Because of the short post-capping period of queens, varroa mites cannot successfully complete their
reproductive cycle in a queen cell. Therefore, the damage of varroa to queen brood has not been
considered important. Similarly, phoretic varroa mites are mainly seen on adult drones and workers
but not on the queen, probably due to constant attendance of the queen by workers. Queen infestation
by varroa occurs only at extremely high mite prevalence in the colony and the near absence of drone
or worker brood [158]. Thus, varroa is generally not a direct concern for queen health or quality but
their impact on viruses (see Section 3.4) within a colony poses an indirect threat to queens.

3.2. Tracheal Mites

The tracheal mite, Acarapis woodi, is an obligate endoparasite of honey bees and was discovered
following extensive colony mortality in the UK [159]. This microscopic parasite mostly dwells in
the respiratory airways and causes acarapisosis or acariosis disease in adult worker bees [160].
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The pathogenic effects of A. woodi on individual bees depend on the number of parasites within
the tracheae, which can be attributed to mechanical injury, physiological disorders stemming from
nutritional loss, damage to tracheal systems, reduction of tracheal airflow and paralysis of flight
muscles [161,162]. Colonies with high mite infestation tend to have poor winter survival [163].

Although the concerns about A. woodi have decreased recently, studies have demonstrated a wide
range of mite prevalence [111,126,127]. Similar to workers, queen infestation is age dependent, with
1-day-old queens carrying on average 6.5 mites and 10-day-old queens only 1.0 mite [128]. The infestation
of queens tends to increase with the level of worker infestation around the queen [127,128]. In commercial
queen breeding operations, young queens may become infested in mating nuclei if worker bees are
already infested, although the results from different surveys vary [53,111]. It is not yet known whether
tracheal mite infestation impairs the performance of queens, both in terms of mating or long term
productivity and survival. Breeding selection programs have tried to develop resistance to A. woodi
by improving worker autogrooming, but experimental studies comparing queens from resistant and
susceptible lines indicate that the queens from resistant colonies do not have reduced tracheal mite
infestation [127].

3.3. Nosema Species

Nosema apis and N. ceranae are two common intestinal parasites, causing Nosemosis in European
honey bees [164] by attacking the epithelial cells in the midgut [30,165]. While N. apis shares a
co-evolutionary history with the European honey bee, N. ceranae has more recently been transmitted
from its original host, Apis cerana to Western honey bees [166]. Nosema spp. are obligate parasites and
their spores are transmitted horizontally through oral and fecal pathways [167,168]. Recent evidence
also suggests that Nosema may be transmitted sexually but not vertically [122,168–170]. Both Nosema
species are limited to reproducing in the midgut [165,171], although N. ceranae seems to be less
tissue-specific and has been found in queen ovaries [122,170]. Symptoms caused by N. apis are a
large number of dead adult bees in the colony and diarrhea spotting at the hive entrance early in
the spring. For N. ceranae infections, however, no conclusive evidence of strong seasonal patterns
exists [28,30]. Its symptoms are increased foraging duration, decreased flight frequencies, decreased
immune functions, and general stress in worker bees that reduces longevity, leading to colony
depopulation and collapse [30,172–174].

Queens, like other members of a colony, can be infected by both N. apis and N. ceranae [122,124],
and N. ceranae has even been detected in larval queens [122]. Most transmission of Nosema spp.,
presumably occurs during the adult stage, including mating, although antimicrobial molecules in
drones’ semen are able to kill N. apis spores and reduce the risk of disease transmission during
mating [169]. Nosemosis in queens causes aberrant physiology, as well as similar gut lesions and
metabolic costs as in workers [135,167]. In addition, queens infected by N. apis start oviposition
later than healthy ones [175,176], display changed pheromone production [135] and in extreme cases
their oocytes degenerate leading to infertility [134]. N. apis infection may severely reduce queen
lifespan to an average of nearly 50 days, resulting in queen supersedure [176], but not in all cases [127].
Compensatory increases in the level of vitellogenin and other antioxidant enzymes occur in infected
queens [135]. These counterintuitive changes may be protective mechanisms that are too costly in
the long-term for the infected queen to survive. Recent surveys indicate that infection levels in
commercialized produced queens are far less than during past decades [53,55,111].

3.4. Viruses

Viruses in honey bees, like in all organisms, are non-living, opportunistic, and obligate intracellular
pathogens that require the host cellular machinery for transcription, translation, and replication [177].
Viral infection may cause direct effects on the morphology, physiology, and behavior of honey
bees [24,25,178]. Thus far, 23 positive-strand RNA viruses have been reported to infect honey
bees [179–181]. The most commonly studied honey bee viruses can be grouped into the families
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Dicistroviridae (Black queen cell virus, BQCV; ABPV; IAPV; and Kashmir bee virus, KBV), Iflaviridae
(DWV; Slow bee paralysis virus, SBPV; and Sacbrood virus, SBV), and an uncategorized family (Chronic
bee paralysis virus, CBPV) [179].

Deformed wing virus (DWV) is a nearly omnipresent and persistent virus, associated with varroa
mite infestation [24]. However, prior to or in the absence of varroa, DWV can also be transmitted through
other pathways between and within castes [137,140,146]. In the absence of varroa, sexual and vertical
transmission of DWV may have been more important. In the post-varroa era of apiculture, drones from
colonies with high mite infestations show high levels of DWV infection [182]. Infected drones are able
to fly and frequently reach drone congregation areas to mate with young queens [95,136]. DWV has
been detected in drone samples from DCAs, the queen “mating sign” (the remaining endophallus
of her last mating partner), and semen collected from queen spermathecae, all of which indicate
venereal transmission of DWV [95,136,137]. However, it is yet unclear if this is the main mechanism
by which uninfected queens become newly infected. It has been also found that the virus is able to
transmit vertically from an infected queen to her offspring [138–140,183]. Heavily infected workers
usually emerge with the symptomatic crippled-wing syndrome and shortened abdomens, resulting
in premature mortality [24,184]. The virus has been detected in older queens as well as young queens.
The latter have usually a lower virus prevalence [53,129,133], suggesting that the virus replicates in adult
queens. DWV has been found to infect the head, fat body, gut, and ovaries of queens [95,130,182,183],
although crippled wings have seldom been reported in queens as a consequence of DWV infections [185].
A high virus titer in reproductive tissues can lead to ovarian degeneration or possibly affect stored
sperm viability [130]. Therefore, a DWV-induced decline of reproduction quality may seriously affect
colony performance, productivity, and queen supersedure.

Chronic bee paralysis virus (CBPV) was the first isolated and described virus causing chronic bee
paralysis in adult worker bees [186]. CBPV can be transmitted through the fecal–oral pathway or via
contact between adult bees when healthy bees are crowded together with infected individuals [187].
An outbreak of CBPV can lead to severe mortality of the workers and eventually to a collapse of the
colony even within a single active season [188]. Often, the queen and a few workers are the only
remaining individuals in collapsed colonies [189]. Several studies have detected a low prevalence of
CBPV in surveyed queens [131,133,183]. Experimentally infected queens show the same symptoms
as worker bees with trembling of legs, spread and disjunct wings, and a bloated abdomen full of
hemolymph with a dilated honey sac. Queens are as susceptible to CBPV as workers [119].

Acute bee paralysis virus (ABPV) and Israeli Acute Paralysis Virus (IAPV) are closely related
viruses, commonly existing as covert low-titer infections [25]. In association with varroa mites,
they are additional factors that promote colony collapse [23,132,147]. ABPV and IAPV are virulent
pathogens that cause paralysis, trembling, and rapid death of workers in 1–2 days after infection [25].
These viruses have been found in different developmental stages and castes [132], although high titers
have been rarely detected in queen surveys [129,131,133,183]. As such, the impact of ABPV and IAPV
on queen health has not yet been well studied. The only investigation by in situ hybridization of
IAPV showed specific detection of the IAPV in the egg, gut, ovaries, and spermatheca of infected
queens [132].

Sacbrood virus (SBV) causes brood disease of the honey bee, but it has also been reported from
adult honey bees without any obvious sign of disease [190]. The virus mostly transmits through
the oral-oral pathway from adult worker bees to the larvae, and clear symptoms appear a few days
after capping [178]. Infected larvae fail to pupate, and ecdysial fluid accumulates beneath their
unshed cuticle, the larvae change color from pearly white to pale yellow, and shortly after the larvae
die [190]. The virus also has been detected in queens, mostly in the ovary and eviscerated body
(i.e., non-specific tissues) but how it affects queen health or whether it can be vertically transmitted is
not well studied [131,139,183].

Black queen cell virus (BQCV) was first isolated from dead queen pre-pupae and pupae sealed in
their cells that had turned dark brown to black along the walls of the cell [191]. It is consistently one of
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the most common viruses detected using laboratory techniques in adult honey bees worldwide [177].
BQCV infection is often observed in queen-rearing colonies, attacking queen larvae and pupae.
Coinfection of workers with BQCV and N. apis within a colony results in increased worker bee
mortality [192], although data to support synergistic interaction between BQCV and N. ceranae are
controversial [193,194]. The virus has been detected with high titers in collapsed colonies [13], and it
has been detected in honey bee queens mostly in gut, feces, and ovaries [131,183].

In sum, it is clear that several viruses cause overt problems for queen health but more
commonly viruses remain asymptomatic and can be efficiently transmitted by queens into the next
generation [133,139]. Thus, viruses should be under selection for decreased virulence towards queens,
but little data are available to test this prediction. Practically, it is unknown how the presence of covert
viruses in queens affects them because non-invasive methods for virus detection in honey bees remain
to be developed. Many other viruses are also known to exist in honey bee colonies, however they
remain relatively poorly characterized and little or nothing is known about their effects on queens.
This lack of even simple descriptive information makes them important targets for further empirical
investigations, especially with regards to their connection to queen and colony health.

4. Conclusions

We have explained above how to quantify queen quality and how different diseases can affect
queen reproductive potential. In turn, high quality queens with high reproductive potential produce
colonies that exhibit high growth and survival [46]. Young and healthy queens produce a solid brood
pattern, facilitating brood care that can prevent disease, and a greater proportion of this brood will
develop into healthy workers to replenish dying workers [44,195]. These colonies are able to store
more honey and pollen throughout the year in comparison to the colonies headed by low quality
queens [46], which translates into better winter survival. Moreover, reproductive quality influences
queen mandibular gland pheromone profile and influences colony cohesion [196]. Replacing the
queen in Nosema- and CBPV-infected colonies with a young, healthy, and productive queen has
been recommended to maintain the colony homeostasis [188,197] and presumably is also advisable
when other diseases are detected. Through direct and indirect effects a healthy, high-quality queen
can mitigate disease effects on colony fitness or even make colonies more resistant to disease [105].
However, more research to demonstrate these interaction effects is clearly needed.

Our review focuses on the intersection between queen reproductive potential, and honey bee
diseases. How these interactions manifest themselves will be significant for understanding colony
health problems and the means to mitigate them. Based on our review, we believe the following
questions should be prioritized for future investigation to help elucidate these interactions and improve
colony health. (1) How do queens initially become infected? There are multiple routes that have been
identified (orally during juvenile and adult life stages, as well as sexually), but we lack in many cases
a comprehensive understanding of exposure, within-queen pathways, and key stages of infection
in queens. If we can identify the means by which queens become infected, then we may be able to
identify the means to avoid infection of queens and their colonies. (2) What triggers viral replication
so that a previously chronic low level (asymptomatic) infection becomes harmful? Several studies
have shown that viruses can be detected as a low, covert level in honey bee queens [129,133], but
the effect of different stressors on the queen to trigger the viruses to become overt and harm the
queen is not clear yet. (3) What is the collective decision-making process of workers to replace sick
queens through supersedure? Researchers have developed a comprehensive model for the internal and
external conditions that trigger swarming behavior in colonies [198], but we lack a similar theoretical
context for non-swarming queen replacement. Developing such a model is a top priority for research,
because early or failed supersedure attempts are an increasingly common problem experienced by
beekeepers, and such events lead to loss of colony productivity and increased mortality. (4) What are
the specific, various phenotypes of “poor queens”? There are many “queen problems” experienced
by beekeepers, but the mechanistic basis is unclear. It will be critical to tease apart the various
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phenotypes of “poor queens” and explain their underlying causes, as it is possible if not likely that
different symptoms of queen problems can be attributed to different factors. (5) What is the effect
of a queen’s microbiome on her health and disease resistance? The typical microbiomes of workers
and hive substrates have been described (e.g., [199]; reviewed in [200]), but our understanding of
queen microbiota is relatively lacking [201,202]. One particularly interesting question is the effect
of the queen on the colony microbiota and vice versa (the effect of diverse colony parameters on
the queen’s microbiota). In the light of the increased interest in probiotics, this area will also have
direct implications for hive management. (6) How does disease mechanistically affect the queen’s
pheromones, chemical signaling, and reproductive physiology? Investigating the interactions between
queen physiology and disease is critical for understanding which resistance factors are more important
than others. Functionally, these interactions are likely going to be expressed through the pheromonal
signaling of the queen and their perception by the workers. Determining how infection may influence
a queen’s signals, the workers’ perception of them, or both will demonstrate how colony cohesion is
ultimately affected by disease. Finally, (7) How does a potential shift to microbreeding affect queen
quality and spread of disease? Currently, the majority of queens in the US are produced by relatively
few commercial queen producers [203], which raises concerns about a lack of genetic diversity and
the spread of certain diseases [141,203], particularly those that are transmitted vertically. There are
currently many efforts to promote smaller-scale, localized production of queens (“microbreeding”)
to address supply and favor locally adapted genotypes (see [204]). However, there is little if any
information about whether such efforts may help bolster genetic diversity, reduce disease prevalence
or intensity, or otherwise have a positive effect on overall queen quality. Potentially, new metrics of
queen quality that include disease resistance or immune measures are needed to guide breeding efforts.

In sum, the interactions between queen health and honey bee diseases have not been sufficiently
studied because their importance was underestimated. However, many unanswered questions in this
area provide fertile grounds for fundamental biological research and the possibility to apply insights
to improve honey bee health.
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