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Abstract: The role of pesticides in recent honey bee losses is controversial, partly because field 

studies often fail to detect effects predicted by laboratory studies. This dissonance highlights a 

critical gap in the field of honey bee toxicology: there exists little mechanistic understanding of 

the patterns and processes of exposure that link honey bees to pesticides in their environment. 

We submit that 2 key processes underlie honey bee pesticide exposure: (1) the acquisition of 

pesticide by foraging bees and (2) the in-hive distribution of pesticide returned by foragers. The 

acquisition of pesticide by foraging bees must be understood as the spatiotemporal intersection 

between environmental contamination and honey bee foraging activity. This implies that 

exposure is distributional, not discrete, and that a subset of foragers may acquire harmful doses 

of pesticide while the mean colony exposure would be appear safe. The in-hive distribution of 

pesticide is a complex process driven principally by food transfer interactions between colony 

members, and this process differs importantly between pollen and nectar. High priority should be 

placed on applying the extensive literature on honey bee biology to the development of more 

rigorously mechanistic models of honey bee pesticide exposure. In combination with mechanistic 

effects modeling, mechanistic exposure modeling has the potential to integrate the field of honey 

bee toxicology, advancing both risk assessment and basic research.  This article is protected by 

copyright. All rights reserved 

Keywords: Behavioral toxicology, Pesticide risk assessment, Environmental modeling, Apis 

mellifera, Pollinator, Foraging 
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INTRODUCTION 

The potential risk that some pesticides pose to honey bees is universally acknowledged, 

but the extent to which specific chemistries can be blamed for particular patterns or incidents of 

colony damage is controversial. Most recently, this controversy has surrounded the neonicotinoid 

insecticides and their possible role in honey bee losses in Europe and North America [1]. While 

laboratory experiments have clearly established the potential for both lethal and sublethal effects 

of neonicotinoids on individual bees [1, 2, 3], field studies have often failed to detect colony-

level effects [4, 5, 6, 7, 8, 9, 10], and where colony-level effects have been observed [11, 12, 13], 

their biological significance is unclear. 

 Any putative link between a toxic compound and a toxic effect is necessarily predicated on 

some model, whether stated or implied, of toxic exposure. At present, though, there exists little 

mechanistic understanding of the patterns and processes of honey bees pesticide exposure [14], 

and this might account for much of the dissonance between laboratory predictions and field 

observations [15] and the controversy surrounding the design and interpretation of field studies 

[16].  

 Mechanistic modeling of toxic exposure is not a novel task in the larger field of 

ecotoxicology [17, 18], and sophisticated exposure models have been developed for many 

organisms, including humans [19]. Honey bees, however, present unique challenges to exposure 

modeling due to their complex social biology [14, 20]. A healthy honey bee colony is composed 

of 3 castes: a single reproductive female (the queen), up to several hundred males (drones), and 

many thousands of sterile females (workers). The worker caste, which is responsible for all 

colony tasks except reproduction, is further subdivided into loose, age-based functional guilds: 

new workers initially clean and cap cells, then progress to brood and queen tending, then to 

A
cc

ep
te

d 
Pr

ep
ri

nt



This article is protected by copyright. All rights reserved 

comb construction and food handling, and finally to the outside tasks of ventilation, guarding, 

and foraging [21]. As foragers, they may collectively survey over 100 km
2
 of the environment 

surrounding their hive [22], collecting nectar, pollen, resin, and water from a vast array of 

sources. Foraged materials are then returned to the hive where they are processed and utilized in 

various ways by other colony members. In this complex economy, all castes and life stages are 

vulnerable to toxic exposure from multiple routes, and parsing this system into tractable 

components for modeling is no trivial challenge.  

 Constraining our discussion to pesticide exposure initiated by foraging in a contaminated 

environment (i.e. excluding in-hive pesticide applications), we identify 2 main challenges of 

honey bee exposure modeling: (1) predicting the acquisition of pesticide by foraging honey bees 

(primary exposure) and (2) tracing the in-hive distribution of pesticide returned to the hive by 

foragers (secondary exposure). 

 For concision, we will refer to these 2 challenges, respectively, using Purdy's [23] 

terminology of ―primary‖ and ―secondary‖ exposure. Within this framework, we explore the 

biological mechanisms underlying exposure, review existing efforts to capture these mechanisms 

through quantitative modeling, and discuss ways in which future models can achieve greater 

predictive and heuristic power. We conclude that both primary and secondary exposure are 

governed by aspects of honey bee behavior and environmental complexity that have not been 

adequately addressed in existing models, and that these oversights are manifest principally in the 

failure to represent exposure as a fundamentally individual-based phenomenon that cannot be 

subsumed by colony-level approaches to honey bee toxicology (Figure 1).   

PRIMARY EXPOSURE  

 Pesticide exposure begins with the foraging of bees in a contaminated environment. This 

A
cc

ep
te

d 
Pr

ep
ri

nt



This article is protected by copyright. All rights reserved 

results both in the exposure of the foragers themselves and, perhaps more importantly, the 

delivery of pesticide to the rest of the colony. Though not considered here, bees may also be 

exposed to pesticides applied inside the colony by the beekeeper to control parasites and 

pathogens. 

Biological background 

 Honey bees gather resources from their surrounding landscape within a foraging range that 

routinely extends a few kilometers from the hive [24] and can extend considerably farther under 

conditions of local scarcity and distant reward [25]. Foragers integrate their individual 

knowledge of resource patches through a unique ―dance language‖ [22, 26] that communicates, 

among other things, the odor and location of valuable forage [27]. This generates colony-level 

knowledge of a vast foraging environment, which, in combination with private information [28, 

29], enables the colony to focus its foraging effort on the most rewarding resource patches [30, 

31].  

 Because flowering plants are heterogeneous in their spatial distribution and bloom 

phenology, honey bee foraging is characterized by marked spatiotemporal heterogeneity [24, 32, 

33, 34]. Spatiotemporal heterogeneity similarly characterizes environmental pesticide 

contamination, since pesticide application is normally restricted to discrete landscape 

components during discrete time intervals. Primary exposure, therefore, must be understood as 

the spatiotemporal intersection of environmental contamination and honey bee foraging activity, 

jointly determined by environment and behavior. This means that a mechanistic exposure model 

must consist of 2 basic components: (1) a submodel of environmental contamination, and (2) a 

submodel of honey bee foraging behavior.   

Existing models 
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 Most models of primary exposure have not attempted mechanistic representations of both 

environmental contamination and honey bee foraging behavior, and some attempt neither. Here, 

we present a summary of existing models in order of increasing mechanistic realism (Table 1).   

 Contact exposure models for foliar sprays. A traditional model for estimating contact 

exposure to foliar sprays is the Atkins model, which uses a simple conversion factor, originally 

derived from a large empirical data set, to estimate the critical field application rate needed to 

reach LD50 contact exposure (dose needed to kill 50% of exposed bees) in bees foraging on a 

treated crop (assuming early morning, pre-foraging application) [35]. 

 

 LD50 (µg a.i/bee) x 1.12 = critical field application rate (g a.i./ha)                      (Equation 1) 

 

Algebraic conversion yields a prediction of contact exposure per bee given a known application 

rate. 

 

 field application rate (g a.i./ha) / 1.12 = bee exposure (µg a.i/bee)                       (Equation 2) 

 

Poquet et al. [36] propose an approach that estimates per-bee exposure (assuming that bees are 

foraging in the field at the time of application) by multiplying field application rate (g/ha) by the 

effective exposure surface area of a honey bee (1.05 cm
2
). The latter value they calculated by 

exposing bees to controlled spray applications in the laboratory and taking the average ratio of 

the application rate (mass/area) and the resulting residues detected on treated bees (mass/bee).   

 As tools for screening-level risk assessment, these models meet the demand for simplicity 

and ease of use. They are not, however, designed to model spatial or temporal heterogeneity of 
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environmental contamination or foraging behavior. 

 Bee-REX contact and dietary exposure model. The U.S. Environmental Protection Agency 

(USEPA) has recently developed the Bee-REX model to predict both contact and dietary 

exposure of foraging honey bees under a variety of pesticide application scenarios [37]⁠. 

Analogous to the Atkins model, contact exposure for aerial spray is estimated as a simple 

conversion factor based on the field data of Koch and Weißer [38]. Dietary exposure 

(contamination of nectar and pollen) via foliar spray is estimated using the contamination rate 

determined for tall grass vegetation in the terrestrial residue exposure model (T-REX), a model 

based on the work of Hoerger and Kanega [39] and originally designed to estimate pesticide 

residues in avian and mammalian food items. Dietary exposure via systemic translocation of seed 

treatment pesticides is assumed to be the peak estimate (1 ppm) recommended by Alix et al. [40]; 

dietary exposure via systemic translocation of tree trunk injections is estimated as the mass of 

injected pesticide divided by the tree's combined mass of leaves and flowers; and dietary 

exposure via systemic translocation of soil treatment is estimated using the fugacity model of 

Briggs et al. [41, 42]. All dietary exposures are converted from concentration to mass-per-bee 

doses using estimates of feeding rates for each caste and life stage. 

 The Bee-REX model is comprehensive in scope while retaining the ease of use needed to 

be an effective screening-level exposure model. Nevertheless, Bee-REX suffers from the same 

key shortcomings as the Atkins and Poquet models: all exposure estimates ignore variability in 

environmental contamination and the behavioral patterns of honey bee foraging.   

 Barmaz drift model of dietary exposure. When a treated crop itself is not attractive to 

foraging bees or not in bloom at the time of treatment, field application rate is no longer a 

meaningful determinant of honey bee exposure. To account for this, Barmaz et al. [43, 44] model 
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a scenario in which a pesticide sprayed on a crop drifts into off-crop habitat [43, 44]. In this 

model, environmental contamination is modeled by a function relating active ingredient 

deposition to distance from crop edge. Temporal dynamics are also accounted for by calculating 

rates of pesticide movement and decay. Honey bee foraging is assumed to occur only in off-crop 

vegetation, which is subject to a gradient of pesticide contamination determined by the drift 

function, and predicted exposure is taken to be the mean of the contamination gradient in the off-

crop habitat. 

 The Barmaz model addresses the issue of variation in environmental contamination by 

calculating a drift gradient of pesticide deposition. For simplicity, though, this gradient is 

collapsed into its mean, which effectively removes the element of spatial heterogeneity from the 

resulting exposure estimates. A unique strength of the Barmaz model, though, is that it 

incorporates an additional dimension of heterogeneity by modeling pesticide movement and 

decay through time. As with all the models discussed so far, though, the Barmaz model attempts 

no mechanistic treatment of honey bee foraging, except to acknowledge that it does not occur in 

an unattractive/non-blooming crop.   

 EFSA landscape model of dietary exposure. In its guidance document on bee risk 

assessment [45], the European Food Safety Authority (EFSA) presents a preliminary model 

designed to estimate the average concentration of pesticide in nectar and pollen entering a honey 

bee colony from a heterogeneously contaminated landscape. The model is highly generalized, 

designed to accept as input any discrete pattern of environmental contamination and any estimate 

of pesticide concentration in floral nectar or pollen. Its basic form is given by Equation 3. 

 

 𝑃𝐸𝐶ℎ𝑖𝑣𝑒 =
∑𝑛=1
𝑁 𝑓𝑛𝑎𝑛𝑃𝐸𝐶𝑛

∑𝑛=1
𝑁 𝑓𝑛𝑎𝑛

                                                                              (Equation 3) 
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where PEChive is the average concentration of pesticide entering the hive in pollen or nectar from 

N patches, fn is a coefficient representing the attractiveness of patch n, which has surface area an 

and a nectar/pollen pesticide concentration of PECn. By dividing the area- and attractiveness-

weighted sum of all patch concentrations by the attractiveness-weighted total patch area, an 

average concentration of pesticide entering the hive in nectar or pollen is calculated.  

 The EFSA model is remarkable in its versatility; given an estimate of pesticide 

concentrations in floral nectar or pollen and an estimate of the relative attractiveness of relevant 

floral patches, the average concentration entering a honey bee colony can be calculated for any 

landscape and any application scenario, and this concentration can be converted to a per-bee 

dose using feeding rate estimates. This design allows the EFSA model to accommodate virtually 

any degree of complexity and mechanistic realism in the representation of environmental 

contamination, provided that contamination is assumed to be spatially discrete (i.e. patch-based, 

not gradient-based). A major weakness of the model, which its authors acknowledge, is that it is 

extremely sensitive to errors in estimating a colony's effective foraging range, since this value 

defines the spatial scale of the model and has a strong effect on the area term in the denominator 

of the exposure equation. The model also relies heavily on estimates of the attractiveness of 

different flora to honey bees, and such estimates are scarce and difficult to verify across different 

contexts. Perhaps most importantly, though, the EFSA model represents exposure only as a 

colony-level mean and does not deal with the distributional nature of individual-level exposure.  

 Baveco dilution model of dietary exposure. The recent model of Baveco et al. [46] is by far 

the most mechanistic with respect to honey bee foraging behavior. In the basic (―single optimal‖) 

version of this model, a virtual colony selects a single optimal forage patch, based on the 
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optimization of energetic efficiency (a function of floral properties and patch distance), from 

within a heterogeneous landscape composed of potentially treated mass-flowering crops and 

untreated non-crop features. Patch selection is then iterated over hourly time steps to incorporate 

the effects of nectar depletion on patch selection. The more complex (―recruitment limited‖) 

version of the model adapts a previous model of honey bee foraging [30, 47] to simulate the 

dynamic allocation of foragers across multiple resource patches, regulated by rates of 

recruitment and abandonment. Both of these mechanistic approaches to simulating patch 

selection avoid imposing an assumed foraging range as in the EFSA model. The net 

concentration of pesticide in foraged nectar (pollen is not considered) over the simulation period 

is determined by the proportion of foragers that  collected from treated crop vs. alternative 

habitat. Thus, the potential diluting effect of uncontaminated forage are taken into account.  

 The strengths of the Baveco model are that it (1) explicitly accounts for spatial 

heterogeneity of environmental contamination, (2) incorporates the mechanistic role of honey 

bee foraging behavior in determining pesticide exposure, and (3) simulates the pesticide 

collected on individual foraging trips rather than just the colony average. This last point, while 

not emphasized by the authors in the paper (since the focus was on the dilution of the colony 

average by uncontaminated forage), is perhaps the most important, as will be discussed in the 

Future steps section. A weakness of the Baveco model is that it cannot be expanded to include 

exposure via contaminated pollen because its energetics-based patch selection mechanism is 

relevant only to nectar foraging. The authors also acknowledge that the model relies on 

somewhat speculative parameters related to floral resource properties and landscape composition, 

but there is no reason why, in principle, the model could not parameterized more rigorously with 

empirical data from a particular study area.   
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Future steps  

 Modeling environmental contamination. Real landscapes–even intensively cultivated ones–

are composed heterogeneously of treated and untreated habitat, and thus contain a range of 

pesticide contamination levels. A honey bee colony's foragers, therefore, are not exposed to a 

uniform pesticide dose but rather to a distribution of doses, likely ranging all the way from null 

to some maximum [14, 45]. Nevertheless, existing models that acknowledge the heterogeneity of 

environmental contamination [45, 46] still present exposure estimates in terms of colony average 

(though the Baveco model [46] does, in fact, calculate exposure on an individual basis).  

 Little is gained and much obscured by collapsing a distribution of exposure levels into 

some central tendency, for average exposure and exposure to the average are not 

interchangeable concepts [48, 49]. Consider the situation represented in the Baveco model in 

which a colony forages either on or off a uniformly contaminated crop, and compare the 

exposure predictions of the Atkins, Poquet, Bee-REX, EFSA, and Baveco (―single optimal‖ 

version) models, respectively (excluding the Barmaz model because we are assuming the treated 

crop is attractive). To make the models directly comparable, we assume the following: (1) 

application is by foliar spray at a uniform rate of 80 g/ha, with no off-field drift, (2) the 

application rate of 80 g/ha translates into a uniform concentration of 80 ppb in floral nectar, (3) 

the treated crop and alternative forage are equally attractive to honey bees, equal in floral density 

and nectar concentration, and never depleted, (4) patches of treated crop and alternative forage 

are equidistant from the hive, and (5) honey bees choose randomly between equally suitable 

forage patches (this is to account for the fact that, in the Baveco model, patch selection is based 

on a deterministic evaluation of patch reward, but under our assumptions foraging patches do not 

differ in reward). 
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 Figure 2 summarizes this comparison when performed separately for contact exposure 

(Atkins, Poquet, and Bee-REX models) and dietary nectar exposure (Bee-REX, EFSA, and 

Baveco models), and repeated under 3 scenarios with differing abundance of treated vs. 

untreated foraging habitat. Comparing predictions of contact exposure underscores the fact that 

the Atkins, Poquet, and Bee-REX models are similar in that they estimate exposure by applying 

a simple coefficient to field application rate. None of these models is designed to account for 

heterogeneity of contamination, so each, respectively, yields the same exposure prediction under 

all 3 scenarios. Comparing predictions of dietary exposure shows that, in each scenario, the 

EFSA model estimates exposure to be the mean of the field contamination distribution while the 

Bee-REX model, not accounting for heterogeneity of contamination, performs just as it did in the 

prediction of contact exposure. The Baveco model is unique in that it has the potential to 

represent the field contamination distribution as a distribution. In each of the scenarios presented, 

the Baveco model would distribute foragers across the 2 levels of contamination in proportion to 

the abundance of each; so, for example, under Scenario A, 50% of simulated foragers would 

collect 0 ppb and 50% would collect 80 ppb. It is important to note, though, that if the 

distribution of exposure levels encountered by foragers is collapsed to its mean, as it is presented 

in Baveco at al. [46], then the Baveco model effectively reduces to the EFSA model under the 

simplifying assumptions of our comparison. The problem with any approach that collapses a 

distribution of exposure into a mean is that the mean concentration may actually be quite rare in 

the environment and experienced by few individual bees. For example, in a strongly bimodal 

distribution of environmental contamination, such as the one depicted in Figure 1B, the mean 

level of exposure is rare, and both lower and higher levels of exposure would be much more 

commonly encountered. The mean of a distribution, without both its form and variance, reveals 
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neither the proportion of foragers that acquire a potentially dangerous dose nor the range of 

doses that enter the hive.  

 The heterogeneity of contamination and the distributional nature of toxic exposure have 

been more fully explored outside of honey bee biology [49, 50]. For example, Schipper et al. [51] 

and Loos et al. [52] modeled the exposure of terrestrial vertebrates to levels of cadmium 

contamination that were heterogeneous both in terms of spatial distribution and concentration in 

different food items. In a model of human pesticide exposure, Leyk et al. [53] used a ―dynamic 

hazard surface‖, a cellular automata model combining land use data with rates of pesticide 

deposition and decay, to simulate both the spatial and temporal distribution of pesticide levels in 

a patch-based landscape. In principle, there is no reason why similar models of heterogeneous 

environmental contamination could not be applied to pesticide exposure in honey bees.  

 Modeling honey bee foraging behavior. Honey bee foraging biology has been studied 

extensively, and many mechanistic models already exist (reviewed in [54]). The challenge for 

exposure modeling is not to break new theoretical ground but simply to apply existing 

knowledge to pesticide exposure scenarios.  

 Two principals of honey bee foraging–neither of which have been seriously discussed in 

the context of toxicology–should be addressed in future exposure models. First, and most 

importantly, colony-level foraging is the collective activity of thousands of individual bees, each 

of which interacts uniquely with the distributions of floral resources and pesticide contamination 

in the foraging landscape. While dance language recruitment creates a degree of non-

independence between foragers, the spatial coarseness of recruitment relative to environmental 

contamination gradients, the constant temporal fluctuations in both contamination levels and 

floral reward, and the propensity of foragers to ignore the information of the dance language and 
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search independently [27] ensure that a colony's thousands of foragers experience a broad 

distribution of exposure levels [38]. As discussed already, a distribution of doses is not 

toxicologically equivalent to its central tendency (the exposure of a hypothetical ―average bee‖), 

so the distributional nature of exposure must be acknowledge and represented in exposure 

models [48, 49]. Second, while selective recruitment to resource patches introduces a non-

random element to honey bee foraging behavior [26], there is evidence that the initial discovery 

and continual rediscovery of resource patches is governed by stochastic search behavior [55, 56]. 

It is impossible to predict exactly how a honey bee colony's foraging force will be distributed 

across a landscape, which means that the distribution of pesticide doses encountered by foragers 

is an effectively stochastic phenomenon that should ideally be modeled probabilistically [14]. 

This problem weakens the predictive potential of exposure models that do not explicitly simulate 

the stochastic process of patch selection. The EFSA model, for example, conceptually distributes 

foragers across all foragable patches in proportion to their attractiveness, when in reality a 

colony would be expected to forage from only a relatively small subset of available patches over 

any given time interval [32]. This approach is acceptable if the goal is to evaluate the theoretical 

―average‖ exposure risk for a colony in a given landscape, but it will likely not yield good 

predictions of actual exposure under specific scenarios. 

 It is also worth noting that no existing model of primary exposure explicitly addresses the 

collection of contaminated water or resin. Water, in particular, may be an importance route of 

exposure in some scenarios [57] and it deserves to be considered alongside nectar and pollen.  
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SECONDARY EXPOSURE 

 Pesticide exposure begins in the field, but processes that occur inside the nest are at least as 

important in determining the of exposures experienced by individual colony members [14, 20, 23, 

58, 59]. The distribution of exposures generated by foraging (i.e. primary exposure) forms the 

input to secondary exposure, which begins as soon as a contaminated forager returns to the nest.  

Biological background 

 Incoming nectar and pollen can undergo extensive processing and redistribution prior to 

consumption, which may significantly modify the initial distribution of pesticide concentrations 

returned to the hive by foragers (Figure 3). The key to elucidating the distribution of pesticide 

inside the hive is modeling the complex processes of in-hive food transmission. To do this, 

nectar, pollen, and secreted brood food and royal jelly (hereafter referred to collectively as 

―jelly‖) must be discussed separately. 

 Nectar. A forager returning with nectar transfers her nectar load via trophallaxis to 1 or 

more ―receiver‖ bees (younger workers tasked with food handling) [60]. A receiver bee, upon 

accepting a nectar load from a forager, proceeds to store, process, and/or redistribute the nectar 

according to the needs of the colony. Under typical conditions, the receiver bee initiates a 

cascade of trophallactic transfers, giving portions of her load to several other bees, which may, in 

turn, distribute portions of nectar to additional bees [61, 62, 63, 64]. This pattern of food 

transmission may proceed through many iterations before the nectar is ultimately consumed or 

deposited in cells for storage [61], and the process is so efficient that labeled sugar syrup 

gathered by only a few foragers can be detected in many [65] or all [66] colony members within 

just a few hours of initial collection in the field. Consequently, nectar from a single contaminated 

floral patch may be ingested by all or most colony members, potentially causing pervasive 
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intoxication. Such extensive distribution, however, involves thorough mixing with nectar from 

potentially uncontaminated sources, so a distribution of field concentrations in nectar would 

become homogenized toward its mean, increasing the likelihood that a pesticide dose consumed 

by any particular bee will be highly diluted from the concentration of contaminated nectar in the 

field.  

 Another important consideration is that honey bees preferentially transfer nectar to 

nestmates of similar age, resulting in a gradual net flow of incoming food from the older bees 

(foragers), to the middle-aged bees (receivers, comb builders), and finally to the younger bees 

that are tasked with feeding the queen and brood [65, 66, 67]. In this way, the younger workers 

in the colony, along with the queen and brood, may be buffered against toxic exposure arising 

from contaminated nectar [66]. It must also be noted that foraging honey bees, in addition to 

receiving nectar/honey from nestmates in the hive, consume some freshly foraged nectar during 

their return flights from the field [68]. Thus, they are exposed to undiluted pesticide doses 

against which hive bees are buffered by the diluting effect of nectar transmission. This may serve 

as a critical safeguard against severe toxic exposure in the colony, since foragers collecting 

highly contaminated nectar will likely perish in the field before sharing their toxic payload 

among nestmates. The potentially adaptive nature of forager mortality is especially interesting in 

light of the fact that homing impairment is a frequently observed symptom of pesticide exposure 

[69, 70, 71, 72]. 

 Pollen/beebread. In contrast to nectar, incoming pollen is not mixed or shared among 

nestmates. Instead, a returning pollen forager searches out a storage cell directly and unloads 

pollen pellets into it [73]. The forager does not process the pollen further, but leaves it to be 

discovered by pollen-packing bees, which add honey and saliva to the fresh pollen and pack it 
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tightly into the bottom of the cell (at which point the pollen can be referred to as ―beebread‖) 

[73]. Successive pollen loads are packed on top of each other, forming a stratified column.   

 While nectar is consumed by all colony members, pollen is consumed almost exclusively 

by the nurse bees, young workers whose principal work is the tending of brood and queen. Pollen 

consumption peaks in bees between 4 and 9 days old and decreases to negligible amounts in bees 

over 20 days old [74], closely mirroring the age-dependent activity of proteolytic enzymes that 

enable pollen digestion [75]. Nurse bees convert the nutrients of dietary pollen into protein-rich 

glandular secretions (jelly) that comprise the primary food of brood and queens and are shared to 

a lesser extent with adult colony members of all ages [76]. 

 Unlike pesticide-laden nectar loads, which may be thoroughly mixed with other nectar 

sources prior to consumption, pesticide-laden pollen loads remain segregated in the stratified 

column of each pollen cell. Any mixing of loads can only occur through individual nurse bees‘ 

consuming pollen from more than 1 storage cell or layer during a feeding bout. The extent to 

which this occurs has never been reported, but even if some mixing occurs by this mechanism, 

nurse bees feeding on pollen are likely subject to pesticide doses that reflect the distribution of 

concentrations collected by foragers much more closely than do the extensively homogenized 

doses arising from nectar/honey transmission.  

 Jelly. Jelly secreted by nurse bees originates from the hypopharyngeal and mandibular 

glands of the head, and may be mixed with regurgitated honey and/or pollen, depending on the 

age and caste of the recipient [21, 77]. The extent to which dietary pesticides can be translocated 

to the hypopharyngeal and mandibular glands and incorporated into their secretions is largely 

unknown and no doubt varies with the physicochemical properties of the active ingredient 

involved. While several studies have documented pesticide residues in jelly [78, 79, 80, 81, 82, 
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though see 83], it is possible that this contamination arose through the incorporation of 

contaminated nectar and/or pollen into secreted jelly rather than pesticide translocation to 

glandular tissue [78, 80].   

 Grooming. Apart from the transmission of contaminated food, grooming behavior could be 

a significant pathway of exposure to pesticides carried on the body surface. Honey bees both 

self-groom and allogroom (groom nestmates). Self-grooming is performed mainly with the legs, 

but often targets the mouthparts (especially the glossa) [84], while allogrooming is performed 

with the mandibles [85, 86]. Both forms of grooming, therefore, create the potential for oral 

exposure. Allogrooming is performed principally by ―grooming specialist‖ bees, a small 

minority of the worker population [87]. Notably, exposure to particulate matter induces both 

self-grooming and allogrooming [88], suggesting that grooming may be an especially important 

route of exposure for microencapsulated pesticides and pesticidal dusts. 

Existing models and future steps 

 Existing models of the in-hive distribution of pesticides have focused on beekeeper-applied 

acaricides that are introduced directly to the colony [89, 90, 91]. These models have approached 

the problem of in-hive distribution from the perspective of fugacity, dividing the colony into 

internally homogeneous compartments (e.g. wax, bees, honey, air) among which a pesticide 

becomes partitioned according to its physicochemical properties.  

 Because beekeeper-applied pesticides largely bypass the usual food transmission process, 

compartment-based fugacity modeling is a reasonable approach to predict their in-hive fate. For 

pesticides that enter the hive in contaminated nectar and/or pollen, though, the food transmission 

process is arguably the more important mechanism of in-hive pesticide distribution, at least over 

short time scales. Moreover, just as in the modeling of primary exposure, it is vital to predict the 
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distribution of doses experienced by individual bees, not just the aggregate partitioning of 

pesticide to the ―bee compartment‖.  

  Unlike honey bee foraging biology, in-hive food transmission has not been studied through 

mechanistic modeling, and basic work remains to be done before the food transmission dynamics 

can be incorporated into a pesticide exposure model. There is, however, a wealth of empirical 

and theoretical studies on in-hive food transmission (reviewed in [92, 93]) that supplies ample 

material for the design and parameterization of models. The fact that in-hive food transmission 

involves the complex interaction of many autonomous entities immediately recommends an 

agent-based modeling (ABM) approach [94] that could take full advantage of the many detailed 

studies of the behavioral rules of food transmission. Moreover, ABMs are fundamentally 

designed to track state variables on an individual basis, enabling the distributional modeling of 

exposure levels experienced by individual bees. The development of an ABM, though, is 

typically a long and demanding process, especially when the model is intended to support 

regulatory decision-making [95, 96]. A simpler, though minimally mechanistic, approach would 

be to simulate in-hive pesticide distribution by Monte Carlo sampling. Given an input 

distribution of pesticide concentrations in nectar or pollen loads delivered to the hive by foragers, 

it would be possible to emulate the food transmission process by conducting repeated random 

draws (representing individual colony members) from the input distribution (or some 

transformation thereof) in a fashion similar to the probabilistic approach of Macintosh et al. [48]. 

 While we emphasize active food transmission as the key mechanism of in-hive pesticide 

fate, we acknowledge the importance of complementing food transmission models with models 

of fugacity and pesticide degradation. This is especially important for pesticide exposure via 

contaminated nectar/honey. Once ripened, honey can be stored for weeks or months prior to 
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consumption, during which time passive fugacity and degradation processes would be the main 

mechanisms affecting the dynamics of nectar-associated pesticides.  

 The relative importance of grooming as a route of exposure is difficult to estimate. 

Compared to food transmission, grooming behavior has received little research attention aside 

from its effects on parasitic mites, and more extensive behavioral studies must precede any 

attempt at quantitative modeling. 

DISCUSSION AND CONCLUSIONS 

 While we acknowledge the role of simple and conservative exposure models as a 

component of risk assessment frameworks, effective modeling requires a cycle of mechanistic 

insight and strategic simplification. Simple models designed for efficient risk assessment must be 

informed and continually revised by reference to more complex models that aim both to predict 

pesticide exposure and to understand the fundamental mechanisms that govern it. Thus, while 

complex mechanistic exposure models may never be practicable as standard risk assessment 

tools, they are necessary to evaluate the validity of risk assessment models and, just as 

importantly, to advance the basic study of honey bee toxicology. 

 Perhaps the most salient shortcoming of existing models (except the Baveco model [46]) is 

the failure to estimate exposure as a distribution of individual doses rather than a discreet 

―colony-level‖ dose. This is true even of the most nuanced conceptual models of honey bee 

pesticide exposure (e.g. [23]), despite the fact that the individual variability in exposure is 

empirically evident [38]. What has led to this dubious consensus? 

 As a eusocial ―superorganism‖, the collective functions of a honey bee colony are insulated 

from the death or impairment of individual bees by a complex web of compensatory mechanisms 

and negative feedback loops [59, 97]. Since the endpoints of concern for honey bee risk 
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assessment are usually colony-level functions like honey production, pollination services, and 

overwintering survival, there has been a trend in research away from individual-level laboratory 

assays and toward colony-level studies that aim to observe the net effects of toxic exposure after 

all the mechanisms of social buffering have played their roles.  

 An unfortunate consequence of this paradigmatic shift from the individual to the colony is 

that the legitimate notion of colony-level effects has become implicitly conflated with the 

misconceived notion of colony-level exposure. Toxic effects can be understood as perturbations 

of patterns or processes at either the individual- or colony-level. For example, sublethal 

neonicotinoid exposure can induce the physiological effect of impaired homing ability on 

individual foragers (e.g [71]), but if enough foragers suffer homing failure, colony-level 

functions like food acquisition and brood rearing could be disrupted, potentially leading to a fatal 

breakdown of colony homeostasis [71]⁠. Individual- and colony-level effects are mechanistically 

linked, albeit in complex ways, and each is amenable to observation and experimentation. 

Conversely, toxic exposure is scientifically tractable only when it is understood as the 

spatiotemporal intersection between a toxic agent and a discrete receptor organism. This makes 

the concept of ―colony-level exposure‖ highly problematic. If the term ―colony‖ is used to 

represent a higher-order system defined by patterns, processes, and relationships emerging from 

interactions between individuals (e.g. information integration, division of labor, genetic structure, 

collective fitness), then there is no measurable sense in which such a composite of abstractions 

can be said to intersect in space and time with a toxic agent. If, alternatively, the term ―colony‖ is 

used simply to represent an aggregation of associated individuals, then ―colony-level exposure‖ 

is nothing more or less than the set of unique exposure events experienced by the individual 

members of a colony. Since the first concept of colony-level exposure is not amenable to 
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empirical methods and the latter concept is indistinguishable from individual-level exposure, it 

must be concluded that toxic exposure can only be studied as a fundamentally individual-based 

phenomenon, and that this is equally true of both primary and secondary exposure (Figure 1).  

 Such an individual-oriented approach to honey bee exposure modeling poses considerable 

challenges, but without a mechanistic understanding of exposure, the rapidly proliferating studies 

of toxic effects in the laboratory and in the field will remain insolubly disjunct. There is ample 

precedent for the development and application of rigorous exposure models in the larger context 

of ecotoxicology and ecological risk assessment, and while the honey bee poses some unique 

challenges to exposure modeling, it is among the world‘s most thoroughly studied organisms, 

and a wealth of empirical and theoretical literature is available for the construction and 

parameterization of models. Indeed, many aspects of honey bee biology have already been 

modeled extensively [54], and the main task of exposure modeling is simply to apply existing 

knowledge to toxicological scenarios.  

 The future of honey bee exposure modeling is especially compelling in view of recent 

advances in mechanistic modeling of pesticide effects, particularly using the versatile 

BEEHAVE model [98, 99, 100]. The conjunction of mechanistic effects modeling and 

mechanistic exposure modeling will lead to an unprecedented depth of insight into honey bee 

toxicology, simultaneously advancing the protection of honey bee health and the basic study of 

ecotoxicology in a social insect model system.  

  

A
cc

ep
te

d 
Pr

ep
ri

nt



This article is protected by copyright. All rights reserved 

Acknowledgment—We thank C. Hoy, M. Wranksy, D. Schmehl, S. Barmaz, and several 

anonymous reviewers for helpful discussion of the manuscript. D. B. Sponsler was supported by 

a grant from the Corn Dust Research Consortium. Funding was also provided by state and 

federal appropriations to the Ohio Agricultural Research and Development Center.  

Data Availability—As this is a review, the data and equations used in the paper can be found 

through the referenced publications. 

  

A
cc

ep
te

d 
Pr

ep
ri

nt



This article is protected by copyright. All rights reserved 

REFERENCES 

1. Godfray HCJ, Blacquiere T, Field LM, Hails RS, Petrokofsky G, Potts SG, Raine NE, 

Vanbergen AJ, McLean AR. 2014. A restatement of the natural science evidence base 

concerning neonicotinoid insecticides and insect pollinators. P Roy Soc B Biology 

281:20140558. 

2. Cresswell JE. 2011. A meta-analysis of experiments testing the effects of a neonicotinoid 

insecticide (imidacloprid) on honey bees. Ecotoxicology 20:149–157. 

3. Blacquière T, Smagghe G, Gestel CAM, Mommaerts V. 2012. Neonicotinoids in bees: a 

review on concentrations, side-effects and risk assessment. Ecotoxicology 21:973–992. 

4. Cutler GC, Scott-Dupree CD. 2007. Exposure to clothianidin seed-treated canola has no long-

term impact on honey bees. J Econ Entomol 100:765–772. 

5. Nguyen BK, Saegerman C, Pirard C, Mignon J, Widart J, Thirionet B, Verheggen FJ, 

Berkvens D, De Pauw E, Haubruge E. 2009. Does imidacloprid seed-treated maize have 

an impact on honey bee mortality? J Econ Entomol 102:616–623. 

6. Pohorecka K, Skubida P, Miszczak A, Semkiw P, Sikorski P, Zagibajło K, Teper D, 

Kołtowski Z, Skubida M, Zdańska D, Bober A. 2012. Residues of neonicotinoid 

insecticides in bee collected plant materials from oilseed rape crops and their effect on 

bee colonies. J Apicul Sci 56:115–134. 

7. Pohorecka K, Skubida P, Semkiw P, Miszczak A, Teper D, Sikorski P, Zagibajło K, Skubida 

M, Zdańska D, Bober A. 2013. Effects of exposure of honey bee colonies to 

neonicotinoid seed–treated maize crops. J Apicul Sci 57:199–208. 

8. Pilling E, Campbell P, Coulson M, Ruddle N, Tornier I. 2013. A four-year field program 

investigating long-term effects of repeated exposure of honey bee colonies to flowering 

A
cc

ep
te

d 
Pr

ep
ri

nt



This article is protected by copyright. All rights reserved 

crops treated with thiamethoxam. PLoS ONE 8:e77193. 

9. Cutler GC, Scott-Dupree CD, Sultan M, McFarlane AD, Brewer L. 2014. A large-scale field 

study examining effects of exposure to clothianidin seed-treated canola on honey bee 

colony health, development, and overwintering success. PeerJ 2:e652. 

10. Rundlöf M, Andersson GKS, Bommarco R, Fries I, Hederström V, Herbertsson L, Jonsson O, 

Klatt BK, Pedersen TR, Yourstone J, Smith HG. 2015. Seed coating with a neonicotinoid 

insecticide negatively affects wild bees. Nature 521:77–80. 

11. Sandrock C, Tanadini M, Tanadini LG, Fauser-Misslin A, Potts SG, Neumann P. 2014. 

Impact of chronic neonicotinoid exposure on honeybee colony performance and queen 

supersedure. PLoS ONE 9:e103592. 

12. Alburaki M, Boutin S, Mercier P-L, Loublier Y, Chagnon M, Derome N. 2015. 

Neonicotinoid-coated Zea mays seeds indirectly affect honeybee performance and 

pathogen susceptibility in field trials. PLoS ONE 10:e0125790. 

13. Budge GE, Garthwaite D, Crowe A, Boatman ND, Delaplane KS, Brown MA, Thygesen HH, 

Pietravalle S. 2015. Evidence for pollinator cost and farming benefits of neonicotinoid 

seed coatings on oilseed rape. Scientific Reports 5:12574. 

14. US Environmental Protection Agency (USEPA). 2012. White paper in support of the 

proposed risk assessment process for bees. Available from: 

http://www.cdpr.ca.gov/docs/emon/surfwtr/presentations/epa_white- paper.pdf 

15. Carreck NL, Ratnieks FLW. 2014. The dose makes the poison: have ‗field realistic‘ rates of 

exposure of bees to neonicotinoid insecticides been overestimated in laboratory studies? J 

Apicult Res 53:607–614. 

16. Hoppe PP, Safer A, Amaral-Rogers V, Bonmatin J-M, Goulson D, Menzel R, Baer B. 2015. 

A
cc

ep
te

d 
Pr

ep
ri

nt



This article is protected by copyright. All rights reserved 

Effects of a neonicotinoid pesticide on honey bee colonies: a response to the field study 

by Pilling et al. (2013). Environ Sci Europe 27:28. 

17. Pastorok RA, Butcher MK, Nielsen RD. 1996. Modeling wildlife exposure to toxic chemicals: 

trends and recent advances. Hum Ecol Risk Assess 2:444–480. 

18. Sample BE, Aplin MS, Efroymson RA, Suter GW II, Welsh CJE. 1997. Methods and tools 

for estimation of the exposure of terrestrial wildlife to contaminants. ORNL/TM-13391. 

Oak Ridge National Laboratory, Oak Ridge, TN, USA. 

19. Loos M, Schipper AM, Schlink U, Strebel K, Ragas AMJ. 2010b. Receptor-oriented 

approaches in wildlife and human exposure modelling: a comparative study. Environ 

Modell Softw 25:369–382. 

20. Wisk JD, Pistorius J, Beevers M, Bireley R, Browning Z, Chauzat MP, Nikolakis A, 

Overmyer J, Rose R, Sebastien R, Vaissiere BE, Maynard G, Kasina M, Nocelli RCF, 

Scott-Dupree C, Johansen E, Brittain C, Coulson M, Dinter A, Vaughan M. 2014. 

Assessing Exposure of Pesticides to Bees. In Fischer D, Moriarty T, eds,  Pesticide Risk 

Assessment for Pollinators. John Wiley & Sons, Inc., Hoboken, NJ, USA, pp. 45–74. 

21. Winston ML. 1987. The Biology of the Honey Bee. Harvard University Press, Cambridge, 

MA, USA. 

22. Seeley TD. 1995. The Wisdom of the Hive. Harvard University Press, Cambridge, MA, USA. 

23. Purdy J. 2015. Potential routes of exposure as a foundation for a risk assessment scheme: a 

Conceptual Model. Julius-Kühn-Archiv 450:22-27. 

24. Couvillon MJ, Schürch R, Ratnieks FLW. 2014a. Waggle dance distances as integrative 

indicators of seasonal foraging challenges. PLoS ONE 9:e93495. 

25. Beekman M, Ratnieks FLW. 2001. Long‐range foraging by the honey‐bee, Apis mellifera L. 

A
cc

ep
te

d 
Pr

ep
ri

nt



This article is protected by copyright. All rights reserved 

Funct Ecol 14:490–496. 

26. von Frisch K. 1967. The dance language and orientation of bees. Harvard University Press, 

Cambridge, MA, USA. 

27. Grüter C, Farina WM. 2009. The honeybee waggle dance: can we follow the steps? Trends 

Ecol Evol 24:242–247. 

28. Biesmeijer JC, Seeley TD. 2005. The use of waggle dance information by honey bees 

throughout their foraging careers. Behav Ecol and Sociobiol 59:133–142. 

29. Grüter C, Ratnieks FLW. 2011. Honeybee foragers increase the use of waggle dance 

information when private information becomes unrewarding. Anim Behav 81:949–954. 

30. Seeley TD, Camazine S, Sneyd J. 1991. Collective decision-making in honey bees: how 

colonies choose among nectar sources. Behav Ecol and Sociobiol 28:277–290. 

31. Seeley TD. 1994. Honey bee foragers as sensory units of their colonies. Behav Ecol and 

Sociobiol 34:51–62. 

32. Visscher PK, Seeley TD. 1982. Foraging strategy of honeybee colonies in a temperate 

deciduous forest. Ecology 63:1790–1801. 

33. Henry M, Fröchen M, Maillet-Mezeray J, Breyne E, Allier F, Odoux J-F, Decourtye A. 

2012b. Spatial autocorrelation in honeybee foraging activity reveals optimal focus scale 

for predicting agro-environmental scheme efficiency. Ecol Model 225:103–114. 

34. Couvillon MJ, Schürch R, Ratnieks FLW. 2014b. Dancing bees communicate a foraging 

preference for rural lands in high-level agri-environment schemes. Curr Biol 24:1212–

1215. 

35. Atkins EL, Kellum D, Atkins KW. 1981. Reducing pesticide hazards to honey bees: 

Mortality prediction techniques and integrated management strategies. Leaflet 2883. 

A
cc

ep
te

d 
Pr

ep
ri

nt



This article is protected by copyright. All rights reserved 

Division of Agricultural Sciences, University of California, Berkeley, CA. 

36. Poquet Y, Bodin L, Tchamitchian M, Fusellier M, Giroud B, Lafay F, Buleté A, 

Tchamitchian S, Cousin M, Pélissier M, Brunet J-L, Belzunces LP. 2014. A pragmatic 

approach to assess the exposure of the honey bee (Apis mellifera) when subjected to 

pesticide spray. PLoS ONE 9:e113728. 

37. US Environmental Protection Agency (USEPA). 2014. Guidance for assessing pesticide risks 

to bees. US EPA Memorandum. 

38. Koch H, Weißer P. 1997. Exposure of honey bees during pesticide application under field 

conditions. Apidologie 28:439-447. 

39. Hoerger F, Kenaga E. 1972. Pesticide residues on plants: correlation of representative data as 

a basis for their estimation of their magnitude in the environment. In: Korte F, ed., 

Environmental Quality and Safety: Chemistry, Toxicology and Technology. George 

Thieme Publishers, Stuttgart, pp. 9–25. 

40. Alix A, Chauzat MP, Duchard S, Lewis G, Maus C, Miles MJ, Pilling E, Thompson HM, 

Wallner K. 2009. Guidance for the assessment of risks to bees from the use of plant 

protection products applied as seed coating and soil applications–conclusions of the 

ICPBR. Julius-Kühn-Archiv 423:15-27. 

41. Briggs GG, Bromilow RH, Evans AA. 1982. Relationships between lipophilicity and root 

uptake and translocation of nonionized chemicals in barley. Pesticide Science 13:495-504. 

42. Briggs GG, Bromilow RH, Evans AA, Williams M. 1982. Relationships between 

lipophilicity and the distribution of nonionized chemicals in barley shoots following 

uptake by roots. Pesticide Science 14:492-500. 

43. Barmaz S, Potts SG, Vighi M. 2010. A novel method for assessing risks to pollinators from 

A
cc

ep
te

d 
Pr

ep
ri

nt



This article is protected by copyright. All rights reserved 

plant  protection products using honeybees as a model species. Ecotoxicology 19:1347–1359. 

44. Barmaz S, Vaj C, Ippolito A,Vighi M. 2012. Exposure of pollinators to plant protection 

products. Ecotoxicology 21:2177–2185. 

45. European Food Safety Authority (EFSA). 2013. EFSA Guidance Document on the risk 

assessment of plant protection products on bees (Apis mellifera, Bombus spp. and 

solitary bees). EFSA Journal 11:3295. 

46. Baveco JM, Focks A, Belgers D, van der Steen JJM, Boesten JJTI, Roessink I. 2016. An 

energetics-based honeybee nectar-foraging model used to assess the potential for 

landscape-level pesticide exposure dilution. PeerJ 4:e2293. 

47. Camazine S, Sneyd J. 1991. A model of collective nectar source selection by honey bees: 

self-organization through simple rules. J. Theor. Biol. 149:547-571. 

48. Macintosh DL, Suter GW, Hoffman FO. 1994. Uses of probabilistic exposure models in 

ecological risk assessments of contaminated sites. Risk Anal 14:405-419. 

49. Purucker ST, Welsh CJE, Stewart RN, Starzec P. 2007. Use of habitat-contamination spatial 

correlation to determine when to perform a spatially explicit ecological risk assessment. 

Ecol Model 204:180–192. 

50. Wickwire T, Johnson MS, Hope BK, Greenberg MS. 2011. Spatially explicit ecological 

exposure models: A rationale for and path toward their increased acceptance and use. 

Integ Environ Assess Manag 7:158–168. 

51. Schipper AM, Loos M, Ragas AMJ, Lopes JPC, Nolte BT, Wijnhoven S, Leuven RSEW. 

2008. Modeling the influence of environmental heterogeneity on heavy metal exposure 

concentrations for terrestrial vertebrates in river floodplains. Environ Toxicol Chem 

27:919–932. 

A
cc

ep
te

d 
Pr

ep
ri

nt



This article is protected by copyright. All rights reserved 

52. Loos M, Ragas AMJ, Plasmeijer R, Schipper AM., Hendriks AJ. 2010a. Eco-SpaCE: an 

object-oriented, spatially explicit model to assess the risk of multiple environmental 

stressors on terrestrial vertebrate populations. Sci Total Environ 408:3908–3917. 

53. Leyk S, Binder CR, Nuckols JR. 2009. Spatial modeling of personalized exposure dynamics: 

the case of pesticide use in small-scale agricultural production landscapes of the 

developing world. Int J Health Geog 8:17. 

54. Becher MA, Osborne JL, Thorbek P, Kennedy PJ, Grimm V. 2013. REVIEW: Towards a 

systems approach for understanding honeybee decline: a stocktaking and synthesis of 

existing models. J Appl Ecol 50:868–880. 

55. Reynolds AM, Smith AD, Reynolds DR, Carreck NL, Osborne JL. 2007. Honeybees perform 

optimal scale-free searching flights when attempting to locate a food source. J Exp Biol 

210:3763–3770. 

56. Reynolds AM, Swain JL, Smith AD, Martin AP, Osborne JL. 2009. Honeybees use a Lévy 

flight search strategy and odour-mediated anemotaxis to relocate food sources. Behav 

Ecol and Sociobiol 64:115–123. 

57. Samson-Robert O, Labrie G, Chagnon M, Fournier V. 2014. Neonicotinoid-contaminated 

puddles of water represent a risk of intoxication for honey bees. PLoS ONE 9:e108443. 

58. Rortais A, Arnold G, Halm M-P, Touffet-Briens F. 2005. Modes of honeybees exposure to 

systemic insecticides: estimated amounts of contaminated pollen and nectar consumed by 

different categories of bees. Apidologie36:71-83. 

59. Berenbaum MR. 2016. Does the honey bee ―risk cup‖ runneth over? Estimating aggregate 

exposures for assessing pesticide risks to honey bees in agroecosystems. Journal of 

Agricultural and Food Chemistry 64:13-20. 

A
cc

ep
te

d 
Pr

ep
ri

nt



This article is protected by copyright. All rights reserved 

60. Park W. 1925. The storing and ripening of honey by honeybees. J Econ Entomol 18:405-410. 

61. Maurizio A. 1975. How bees make honey. In Crane E, ed, Honey: a comprehensive survey. 

Heineman, London, UK, pp. 77-105. 

62. Seeley TD. 1989. Social foraging in honey bees: how nectar foragers assess their colony's 

nutritional status. Behav Ecol and Sociobiol 24:181–199. 

63. Pírez N, Farina WM. 2004. Nectar-receiver behavior in relation to the reward rate 

experienced by foraging honeybees. Behav Ecol and Sociobiol 55:574–582. 

64. Grüter C, Farina WM. 2007. Nectar distribution and its relation to food quality in honeybee 

(Apis mellifera) colonies. Insect Soc 54:87–94. 

65. Nixon HL, Ribbands CR. 1952. Food transmission within the honeybee community. Proc 

Roy Soc of London B 140:43–50. 

66. Feigenbaum C, Naug D. 2010. The influence of social hunger on food distribution and its 

implications for disease transmission in a honeybee colony. Insect Soc 57:217–222. 

67. Free JB. 1957 The transmission of food between worker honeybees. Brit J Anim Behav 2:41-

47. 

68. Brandstetter M, Crailsheim K, Heran H. 1988. Provisioning of food in the honeybee before 

foraging. In Nachtigall W, ed, The Flying Honeybee (BIONA Report 6) (ed. W. 

Nachtigall). Akademie der Wissenschaften und der Literatur, Mainz, Germany, pp 129-

148. 

69. Vandame R, Meled M, Colin ME, Belzunces LP. 1995. Alteration of the homing-flight in the 

honey bee Apis mellifera L. exposed to sublethal dose of deltamethrin. Environ Toxicol 

Chem 14:855–860. 

70. Bortolotti L, Montanari R, Marcelino J, Medrzycki P, Maini S, Porrini C. 2003. Effects of 

A
cc

ep
te

d 
Pr

ep
ri

nt



This article is protected by copyright. All rights reserved 

sub-lethal imidacloprid doses on the homing rate and foraging activity of honey bees. B 

Insectol 56:63–68. 

71. Henry M, Beguin M, Requier F, Rollin O, Odoux J-F, Aupinel P, Aptel J, Tchamitchian S, 

Decourtye A. 2012a. A common pesticide decreases foraging success and survival in 

honey bees. Science 336:348–350. 

72. Matsumoto T. 2013. Reduction in homing flights in the honey bee Apis mellifera after a 

sublethal dose of neonicotinoid insecticides. B Insectol 66:1–9. 

73. Parker RL. 1926. The collection and utilization of pollen by the honeybee. Mem Cornell 

Agricul Exper Station 98:1-55. 

74. Crailsheim K, Schneider L, Hrassnigg N, Bühlmann G, Brosch U, Gmeinbauer R, 

Schöffmann B. 1992. Pollen consumption and utilization in worker honeybees (Apis 

mellifera carnica): Dependence on individual age and function. J Insect Physiol 38:409–

419. 

75. Moritz B, Crailsheim K. 1987. Physiology of protein digestion in the midgut of the honeybee 

(Apis mellifera L.). J Insect Physiol 33:923-931. 

76. Crailsheim K. 1992. The flow of jelly within a honeybee colony. J Comp Physiol B 162:681–

689. 

77. Haydak MH. 1970. Honey bee nutrition. Annu Rev Entomol 15:143–156. 

78. Wittmann D, Engels W. 1981. Development of test procedures for insecticide-induced brood 

damage in honey bees. Mittelungen der Deutschen Gesellschaft fur Allgemeine und 

Angewandte Entomologie 3:187-190. 

79. Stoner A, Wilson WT, Harvey J. 1985. Acephate (Orthene®): effects on honey bee queen, 

brood and worker survival. Appl and Environ Microbiol 125:448-450. 

A
cc

ep
te

d 
Pr

ep
ri

nt



This article is protected by copyright. All rights reserved 

80. Davis AR, Shuel RW. 1988. Distribution of 14C-labelled carbofuran and dimethoate in royal 

jelly, queen larvae and nurse honeybees. Apidologie 19:37–50. 

81. Johnson RM, Percel EG. 2013. Effect of a fungicide and spray adjuvant on queen-rearing 

success in honey bees (Hymenoptera: Apidae). J Econ Entomol 106:1952–1957. 

82. Dively GP, Embrey MS, Kamel A, Hawthorne DJ, Pettis JS. 2015. Assessment of chronic 

sublethal effects of imidacloprid on honey bee colony health. PLoS ONE 10:e0118748. 

83. DeGrandi-Hoffman G, Chen Y, Simonds R. 2013. The effects of pesticides on queen rearing 

and virus titers in honey bees (Apis mellifera L.) Insects 4:71-89. 

84. Linghu Z, Wu J, Wang C, Yan S. 2015. Mouthpart grooming behavior in honeybees: 

Kinematics and sectionalized friction between foreleg tarsi and proboscises. Journal of 

Insect Physiology 82:122-128. 

85. Haydak, M. H. 1945. The language of the honeybees. American Bee Journal 85:316–317. 

86. Milum VG. 1947. Grooming dance and associated activities of the honey bee. Illinois State 

Academy of Science Transactions 40:194–196. 

87. Kolmes, S. 1989. Grooming specialists among worker honey bees, Apis mellifera. Animal 

Behavior 37:1048-1049. 

88. Land BB, Seeley TD. 2004. The grooming invitation dance of the honey bee. Ethology 

110:1-10. 

89. Tremolada P, Bernardinelli I, Colombo M, Spreafico M, Vighi M. 2004. Coumaphos 

distribution in the hive ecosystem: case study for modeling applications. Ecotoxicology 

13:589–601. 

90. Tremolada P, Bernardinelli I, Rossaro B, Colombo M, Vighi M. 2011. Predicting pesticide 

fate in the hive (part 2): development of a dynamic hive model. Apidologie 42:439–456. 

A
cc

ep
te

d 
Pr

ep
ri

nt



This article is protected by copyright. All rights reserved 

91. Bonzini S, Tremolada P, Bernardinelli I, Colombo M, Vighi M. 2011. Predicting pesticide 

fate in the hive (part 1): experimentally determined τ-fluvalinate residues in bees, honey 

and wax. Apidologie 42:378–390. 

92. Crailsheim K. 1998. Trophallactic interactions in the adult honeybee (Apis mellifera L.). 

Apidologie 29:97-112. 

93. Farina WM, Grüter C. 2009. Trophallaxis: a mechanism of information transfer. In Jarau S, 

Hrncir M, eds, Food Exploitation by Social Insects: Ecological, Behavioral, and 

Theoretical Approaches. CRC Press,  pp 173-187. 

94. Railsback SF, Grimm V. 2011. Agent-Based and Individual-Based Modeling: A Practical 

Introduction. Princeton University Press, Princeton, NJ, USA. 

95. Topping CJ, Dalkvist T, Forbes VE, Grimm V, Sibly RM. 2009. The potential for the use of 

agent-based models in ecotoxicology. In Devillers J, ed, Emerging Topics in 

Ecotoxicology: Principles, Approaches, and Perspectives. Springer US, Boston, MA, 

USA, pp 205-235. 

96. Grimm V, Becher MA, Kennedy P, Thorbek P, Osborne J. 2014. Ecological modeling for 

pesticide risk assessment for honey bees and other pollinators. In Fischer D, Moriarty T, 

eds, Pesticide Risk Assessment for Pollinators. John Wiley & Sons, Inc., Hoboken, NJ, 

USA, pp. 149–162. 

97. Henry M, Cerrutti N, Aupinel P, Decourtye A, Gayrard M, Odoux J-F, Pissard A, Rüger C, 

Bretagnolle V. 2015 Reconciling laboratory and field assessments of neonicotinoid 

toxicity to honeybees. Proc. R. Soc. B 282: 20152110. 

98. Becher MA, Grimm V, Thorbek P, Horn J, Kennedy PJ, Osborne JL. 2014. BEEHAVE: a 

systems model of honeybee colony dynamics and foraging to explore multifactorial 

A
cc

ep
te

d 
Pr

ep
ri

nt



This article is protected by copyright. All rights reserved 

causes of colony failure. J Appl Ecol 51:470−482. 

99. Rumkee JCO, Becher MA, Thorbek P, Kennedy PJ, Osborne JL. 2015. Predicting honeybee 

colony failure: using the BEEHAVE model to simulate colony responses to pesticides. 

Environ Sci Tech 49:12879–12887. 

100. Thorbek P, Campbell PJ, Sweeney PJ, Thompson HM. 2016. Using BEEHAVE to explore 

pesticide protection goals for European honeybee (Apis mellifera L.) worker losses at 

different forage qualities. Environmental Toxicology and Chemistry 9999:1-11.  

  

A
cc

ep
te

d 
Pr

ep
ri

nt



This article is protected by copyright. All rights reserved 

Figure 1. Relationship between individual-level exposure, individual-level effects, and colony-

level effects. A normal distribution of individual exposure levels (A) clustered tightly around the 

mean (blue dashed line) results in a very small proportion of the colony experiencing doses 

above the predicted no effect concentration (PNEC) (red dashed line). Bimodal (B) or lognormal 

(C) distributions having the same mean as the normal distribution result in a much larger 

proportion of bees experiencing pesticide doses in excess of the level of concern.  The 

distribution of exposures (depicted by red color intensity) experienced by individual bees causes 

a distribution of individual effects (depicted by opacity), ranging from mild sublethal impairment 

to death (upside-down bees). These individual effects may translate into effects on colony-level 

functions. 

Figure 2. Comparison of contact and dietary exposure estimates. Bars represent the proportion of 

foraging habitat that is untreated or treated with an an application rate of 80 g/ha. Scenario A 

represents equal abundance of contaminated and uncontaminated forage. In Scenarios B and C, 

the relative abundance is skewed toward either the contaminated forage (Scenario B) or the 

treated crop (Scenario C). Under contact exposure, axes labeled ―Atkins‖, ―Poquet‖, and ―Bee-

REX‖ are transformations of the main x-axis (depicting field application rate) using the 

coefficients by which field application rate is multiplied in each model. The dashed line shows 

where the exposure predictions of the models fall with respect to the range of environmental 

contamination levels caused by range of field application rates. Under dietary exposure, the 

dotted lines represent the predictions of the EFSA model and Baveco models (when the latter is 

collapsed to its mean) for each scenario, while the dashed lines represent those of the Bee-REX 

model. Asterisks, with subscripts representing the percentage of foragers exposed to the 

indicated dose, show the raw distribution of exposure predicted by the Baveco model. 

A
cc

ep
te

d 
Pr

ep
ri

nt



This article is protected by copyright. All rights reserved 

Figure 3. Processing pathways of nectar-associated and pollen-associated pesticide. Pesticide-

laden nectar (red) undergoes extensive trophallactic transmission prior to consumption, resulting 

in widespread but dilute ingestion of nectar-associated pesticides. Pesticide-laden pollen (blue) 

undergoes no mixing or dilution and is consumed almost exclusively by nurse bees, which may, 

therefore, receive more extreme (higher and lower) pesticide doses than other colony members. 

Nurses convert pollen-derived nutrients into glandular secretions (jelly) (purple) that they 

combine with variable amounts of nectar and raw pollen; these mainly nourish the brood and 

queen but also supply the dietary protein needed by adult workers and drones. 
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Table 1. Summary of existing quantitative models of primary exposure. Models are described 

according to the modes of pesticide application they represent, the modes of exposure they 

estimate, and their approaches to modeling the critical components of environmental 

contamination and honey bee foraging behavior. 

 

 

  

Model reference Modes of 

application 

Modes of exposure Environmental 

contamination 

Honey bee foraging 

behavior 

Atkins (1981) foliar spray contact field application rate NA 

Poquet (2014) foliar spray contact field application rate NA 

USEPA (2012) 

(Bee-REX) 

foliar spray 

seed 

treatment 

soil drench 

contact 

dietary (nectar + 

pollen) 

field application rate NA 

Barmaz (2010, 

2012) 

foliar spray dietary (non-

specific) 

drift gradient NA 

EFSA (2013) non-specific dietary (nectar + 

pollen) 

variable 

contamination 

floral attractiveness 

coefficient 

Baveco et al. 

(2016) 

non-specific dietary (nectar) treated and untreated 

areas 

variation in nectar 

concentration and 

availability; patch 

selection by energetic 

optimization 
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